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Abstract. We study a family of harmonic univalent functions using
an operator involving g-derivative and hypergeometric functions. We
then obtain necessary and sufficient condition bounds for functions in
this family. Extreme points and convex set for such functions are also
introduced.

2000 Mathematics Subject Classification: 30C45; 30C50.
Keywords and Phrases: Harmonic function, g-derivative, Hyperge-
ometric function, Convolution, Extreme point, Convex set.

1 Introduction

Let Sy denote the class of functions which are harmonic, univalent,
complex valued and sense preserving in U = {z € C : |z| < 1} normalized
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by f(0) = f.(0) — 1 =0. Each f € Sy can be expressed by f =h+g
where h and g are analytic in U. We call h and ¢ analytic part and
co-analytic part of f respectively. Also f is locally univalent and sense
preserving in U if and only if |h/(2)| > |¢/(2)| in U, see [2]. Thus, for
f=h+7g € Sy, we may consider

h(z) =z+ Zakzk, g(z) = Z b2, 0<bh <1). (1)
k=2 k=1

The g-shifted factorial for |¢| < 1 is defined by

<a,q>k:{1 ST

(l-a)l-agq)(l—ag®)---(1—ag"™') , keN,

where N denotes the set of positive integers and « is a complex number.
For complex parameters «;, 3; and ¢ where i« = 1,2,...,m, j =

1,2,...,n, Bj € C\{0,—-1,-2,...} and |¢| < 1, we consider the basic

hypergeometric function ,,®,(a1,...,am; b1, .., bn,q, z) defined by

. _ - (ah(J)k”'(amuq)k k
m‘bn(alvn-70‘m7617-~-75n7q’2:) - g (q,q)k(ﬁhq)k(ﬂn,q)kz 5

k=0
(3)

where m =n+1, m,n € Ng = NU{0}, z € U and the ¢-shifted factorial

(cr, @)k is given by (2).
We note that

lim (m(I)n(qoa’ o 7qam; qﬁl7 e q5n7q7 (q _ 1)1+nfmz))

q—1— (4)
- an(Oél,. ")am;ﬂh' ">5n7Q7Z)7
where ., Fp (a1, ..., m; B, - -+, Bns G, 2) is the well-known hypergeometric
function. For more details, one may refer to [3, 5] and [0].
The g-derivative of a function G is defined by
G(qz) — G(z
0,(G) = GG L), 5)

(¢-1Dz ~
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We can easily observe that

(6)
where [k], = % is the g-integer number, see [7] and [10].
We conclude that

lim 9,(G(2)) = G (2).

For more properties of g-derivative, see [1] and [7]
the linear operator

. Now, we consider

Hy' (s am; Bry -y Brs @) f(2)
= (qu)n(ah-"704771;/617"'7571;(]72)) *f(Z) (7)
=z+ ZF(O[Z)B]7Q7 k)akzk)
k=2
where “x”
and

stands for the well-known convolution (or Hadamard product)

(ala Q)k—l T (O[m, Q)k—l
oy, 85,9, k) = . 8
(s B ) (0, k=181, Q=1 (Bns -1 ®
It is convenient to write
H?(al,...,am;ﬂl,...

s @) f(2) = H' (e, B,9) f(2). 9)

Aldweby and Darus [1] defined the operator (7) on harmonic function
f =h+7 given by (1) as follows

Hy' (o, B,9) f(2) = Hy'(a, B, q)h(2) + Hi(a, B,q)9(2).  (10)
For more properties of operators given in (7) and (10), see [3].
We denote by Sz the class of functions f = h + g, where

h(z)=2= lal*,  g(z2) =) Iul*, (I <1) (11)
k=2 k=1
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Forv>0,0<67n<1,0<0<1andteRletSE(y,d,1,0) denote
the class of functions in Sy of the type (1) such that

Re { (neit _ 75) _ 776“ (HZ‘(% ﬁ; Q)f(z)) + (7 496) ('HZL(Oz, i; q)f(z))

Z,

(12)
where
/ 0 "o 0? .
2 = %(z) =1z, 2" = w(z) = —2z, (13)
and
(M3 (05,001 (2)) = 5 (M0 5, ) (re)) ”

= iZ(Hnm(Ck, 5, Q)h)/ - iZ(Hnm(Ck, 57 Q)g)/7

2 .
(M7 8,0)(2)) = o (B30, B, ) (re)

= —z(H7 (0. B.)h) = 2 (170, B, n) " (19)
— 2(H1(a, B,9)9) — 22 (HI (o, B,9)g)".

Also we denote by 8%(7, 8,1m,0) the subclass of 8% (v,8,7,0) consisting
of functions f € S;; of the type (11) which satisfy the condition (12).

2 Main Results

In this section, we first give the sufficient coefficient bounds for f(z) €
St,(v,6,m,0) and then we show these sufficient conditions are also nec-
essary for f(z) € S%('y, d,m,0). By using the results of Theorem 2.1 in
[9], we obtain the following Theorem.
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Theorem 2.1. Suppose f = h+g, h and g be given by (1) and

Z| Y+ 8)k+ (1 —v—38+79) ﬂk2lr(ai7ﬁj7Q7k)‘ak‘+
k=2

D+ 0k — (1= = 6 +78) — k| T(cw, By, ¢, k) |be| < 1= o
k=1

Then f(z) € S(v,6,n,0).

Proof. By using the fact that
Re{W} >0« [WH+1—-0| 2 |W-1-0|,

and letting

peit (i (@: 8.0/ (2))"
(H (o, B,9) f ()’

Hir(0. 5,0)f ()

W = net 775) —

+(v+9)

+ (1 =7)(1-9)

It is enough to show that

WHl—o|—|W-1-0|/>0

But by using (13), (14) and (15) we have

o
W +1— 0| = e — 5 — ne' (1 + Z kT (v, B, q, k)apz"""+

k=2

+Zk _1 04276]7‘]7 )akzk 1 Zkr a’mﬁjaQa )bk( )

k=1

+Zk - (o By ()

(16)

+ (v +4) (1 n Z kD (0i, By, q. k)arz® =~ kT (as, B, q, k)@(z)’“)

k=2 k=1
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H =)= 0) (14 X Tl Bt

k=2

+> T(i, 85,4, k‘)bk(z)k_1> |

k=1
e k
z
>2-0-Y |1+ (v+08)(k—1)+~5 — nk?| T(ai, B, . k)| ax| =
k=2

Zk
VR R
z

(o]
_ Z 11— (v+6)(k—1) + 5 — nk?| T(cu, Bj. ¢, k) |b|
k=1

and

[W—-1-0|<o0o

o k
z
k=2
£ 3 [1= (v + 0)(k = 1) + 98 = nk?| Dlaws By 0. )bl |
k=1

where I'(a, 55, ¢, k) is defined by (8).
So by using (16), we have

W+1l—0|—-|W-1-0|>

2[1 — =Y |(v+ Ok + (1= v — 5 +78) = nk?| T, By, 0, k)l
k=2

k=1

O

Remark 2.2. All the techniques are similar to the proofs of theorems
in [¢] and in special case on parameters we get the same results.

Remark 2.3. The coefficient bound (16) is sharp for the function

e Tk k
H =
(2) Z*};|(y+5)k;+(1—7—5+v6)—nkQIF(%ﬁj»qak‘)z
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Yk AL
+ )
ZI%L(S (1—y—08+10) - nkQIF(ai,BJ‘aq»k)(z)

where
1 o0 o0
(Y lanl + Y ll) = 1.
k=2 k=1

Theorem 2.4. f=h+g¢€ S%(’y, 0,m,0) if and only if

[e.9]

§:<K7+®k+(r—v—5+y®—nﬁ\mﬂ

k=2

17
+M7+®k—a—7—5+7®—nﬁwm0rmh@ﬂ¢) (a7)
<1—0—(2(y+0) = (L +~5+n))bi]-

Proof. From Theorem 2.1 S%(% 6,m,0) C 8, (v,6,m,0), and since (16)
is equivalent to (17) we conclude the “if part”. For the “only if part”,
suppose that f(z) € S%(ﬂy7 8,m,0). Then for z = re? € U, we have

Re{(neit _8) = et (e pf@)" | (e 8. 9)f ()

Z// Z/

+ (1 _,7)(1 _ 5)H:1n(aai7Q)f(z>} >0

= Re {neit )

i

— pet (1 + Z kT (0, B, q, k)akzk_l + Z k(k —1)I'(o, By, 9, k)akzk_l

k=2 k=2

ZkF O[’L)B]7q7 bk k 1+Zk _1 auﬁ]a% ) ( )k—1>

(wa( IR IEEES SRR

k=2 k=1

(1 —y)(1—0) (1 £ 3 T(as By, a2t
k=2
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+ ir(ai, Bi,q, k)bk(z)k1> }

>1=Y (v +0)k+ (1 -y —05+70) — nk?| |ar|T (e, Bj, ¢, k)
k=2
+ (207 +6) = (1+76 +m)) |ba]
+ Z |(’y +0)k—(1—y—=6+799) — nk2| T(a, By, q, k)|bg|r*! > o
k=2
The above inequality holds for all z € U. So if 2z = r — 1. We obtain
the required result (17). Now the proof of theorem is complete. O

3 Geometric Properties

In this section we introduce extreme points of S%(% d,m,0) and show
that this class is a convex set.

Theorem 3.1. f = h+g € Stﬁ(’y, 0,m, o) if and only if it can be expressed

by
f(2) = X124 Xphi(2) + > Yigr(2), (2 €1), (18)
k=2 k=1
where
l—0
hp(z) =z — 2"
) = o+ (L= =61 20) — 2 (s By, B)
and
1—0 ok
z) = zZ)".
90 = TSk = (= =6+ 0) e e, B g F)
Furthermore

Yoo 1 XY e Ve =1, X, 20,Y, >0 fork=1,2,..., and (e, 55, q, k)
is given by (8).
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Proof. If f be given by (18), then

1—0

ZMMH (1=~ — 6 +0) — ak*T(as, By 4, )

oo

1—0
Yi(Z)E.
kZ (vy+0)k—(1—~—0+~) —nk? T(, B, q, k) )

Since by (17), or equivalently by (16), we have

k=2
(1_U)|Xk|

+Z|’y+5 (1—=~v—=35+79) nkz2|1“(ai,6j,q,k)><

) (1- o)W

= (1= o)( X 1xl+ 3 1)
k=2 k=1
:(1—0’)(1—X1) <1-o.

So f(2) € St(,6,1,0).
Conversely, suppose f(z) € S%(’y,&,n,a). By letting

X, =1- (ikarliYk),

where
Xk_ 1 |ak’|7
— 0
k= 1—0 | k‘v

we conclude the required representation and so the proof is complete.

g

szk
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Theorem 3.2. If f,(2), n=1,2,..., belongs to S%(’y, d,m,0), then the

function F(z) = > 07 Anfn(2) is also in S%(’y,é,n,a), where fr(2) is
defined by

00 )
Z) = Z_Zak,nzk_}—zbk,n(z)k’ (n: 172a"" Z?:l)\n = 1)
k=2 k=1

(19)

Proof. Since f(z) € Stﬂ('y, d,m,0), by (17) or equivalently (16), for
n=1,2,... we have

k=2

) (v + Ok — (1 =y =6 +45) — nk?| T(e, B, ¢, k) [br| < 1— 0.
k=1

Also

F(z):i)\nfn( _z—Z(nZAnakn)z +Z(Z)\ b ) (2)",

Now accordmg to (17) or equivalently (16), we have

Z )\nak n
n=1

(v + )k + (1 —~ =6 +78) — nk?| T(w, Bj, ¢, k)| ak,nl

(v+8)k+ (1 —v—6&+70) — nk? T(ai, Bj, g, k)

k=

+ (Y + 8k — (1= — 64 ~8) — nk?

{

(7 + 6)k — (1— 7 — 6+ 78) — k2| T, B, k>|bk,n|}xn

2(1—0)2)\n:1—0.
n=1

Thus F(z) € S%(’y,é, n,o). O
Remark 3.3. We note that 8%(7, d,m,0) is a convex set.

(873 6]) q, k)

M 0
L

n
M8
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