Journal of Mathematical Extension

Vol. 16, No. 6, (2022) (6)1-12

URL: https://doi.org/10.30495/JME.2022.1283

ISSN: 1735-8299

Original Research Paper

Harmonic Univalent Functions Defined by q-Derivative and Hypergeometric Function

Sh. Najafzadeh*

Payame Noor University

Z. Dehdast

Payame Noor University

M.R. Foroutan

Payame Noor University

Abstract. We study a family of harmonic univalent functions using an operator involving q-derivative and hypergeometric functions. We then obtain necessary and sufficient condition bounds for functions in this family. Extreme points and convex set for such functions are also introduced.

2000 Mathematics Subject Classification: 30C45; 30C50. **Keywords and Phrases:** Harmonic function, q-derivative, Hypergeometric function, Convolution, Extreme point, Convex set.

1 Introduction

Let $\mathcal{S}_{\mathcal{H}}$ denote the class of functions which are harmonic, univalent, complex valued and sense preserving in $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$ normalized

Received: June 2019; Accepted: July 2020

*Corresponding Author

by $f(0) = f_z(0) - 1 = 0$. Each $f \in \mathcal{S}_{\mathcal{H}}$ can be expressed by $f = h + \overline{g}$ where h and g are analytic in \mathbb{U} . We call h and g analytic part and co-analytic part of f respectively. Also f is locally univalent and sense preserving in \mathbb{U} if and only if |h'(z)| > |g'(z)| in \mathbb{U} , see [2]. Thus, for $f = h + \overline{g} \in \mathcal{S}_{\mathcal{H}}$, we may consider

$$h(z) = z + \sum_{k=2}^{\infty} a_k z^k, \qquad g(z) = \sum_{k=1}^{\infty} b_k z^k, \qquad (0 \le b_1 < 1).$$
 (1)

The q-shifted factorial for |q| < 1 is defined by

$$(\alpha, q)_k = \begin{cases} 1 &, & k = 0, \\ (1 - \alpha)(1 - \alpha q)(1 - \alpha q^2) \cdots (1 - \alpha q^{k-1}) &, & k \in \mathbb{N}, \end{cases}$$
 (2)

where \mathbb{N} denotes the set of positive integers and α is a complex number. For complex parameters α_i , β_j and q where $i=1,2,\ldots,m,\ j=1,2,\ldots,n,\ \beta_j\in\mathbb{C}\backslash\{0,-1,-2,\ldots\}$ and |q|<1, we consider the basic

hypergeometric function ${}_{m}\Phi_{n}(\alpha_{1},\ldots,\alpha_{m};\beta_{1},\ldots,\beta_{n},q,z)$ defined by

$${}_{m}\Phi_{n}(\alpha_{1},\ldots,\alpha_{m};\beta_{1},\ldots,\beta_{n},q,z) = \sum_{k=0}^{\infty} \frac{(\alpha_{1},q)_{k}\cdots(\alpha_{m},q)_{k}}{(q,q)_{k}(\beta_{1},q)_{k}\cdots(\beta_{n},q)_{k}} z^{k},$$
(3)

where m = n + 1, $m, n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, $z \in \mathbb{U}$ and the q-shifted factorial $(\alpha, q)_k$ is given by (2).

We note that

$$\lim_{q \to 1^{-}} \left({}_{m}\Phi_{n}\left(q^{\alpha_{1}}, \dots, q^{\alpha_{m}}; q^{\beta_{1}}, \dots, q^{\beta_{n}}, q, (q-1)^{1+n-m}z\right) \right)$$

$$= {}_{m}F_{n}(\alpha_{1}, \dots, \alpha_{m}; \beta_{1}, \dots, \beta_{n}, q, z),$$

$$(4)$$

where ${}_{m}F_{n}(\alpha_{1},\ldots,\alpha_{m};\beta_{1},\ldots,\beta_{n},q,z)$ is the well-known hypergeometric function. For more details, one may refer to [3, 5] and [6].

The q-derivative of a function G is defined by

$$\partial_q \big(G(z) \big) = \frac{G(qz) - G(z)}{(q-1)z}, \qquad (q \neq 1, \quad z \neq 0). \tag{5}$$

We can easily observe that

$$\partial_q(z^k) = \frac{1 - q^k}{1 - q} z^{k-1} = [k]_q z^{k-1}, \tag{6}$$

where $[k]_q = \frac{1-q^k}{1-q}$ is the *q*-integer number, see [7] and [10]. We conclude that

$$\lim_{q \to 1} \partial_q \big(G(z) \big) = G'(z).$$

For more properties of q-derivative, see [4] and [7]. Now, we consider the linear operator

$$\mathcal{H}_{n}^{m}(\alpha_{1}, \dots, \alpha_{m}; \beta_{1}, \dots, \beta_{n}; q) f(z)$$

$$= (z_{m} \Phi_{n}(\alpha_{1}, \dots, \alpha_{m}; \beta_{1}, \dots, \beta_{n}; q, z)) * f(z)$$

$$= z + \sum_{k=2}^{\infty} \Gamma(\alpha_{i}, \beta_{j}, q, k) a_{k} z^{k},$$

$$(7)$$

where "*" stands for the well-known convolution (or Hadamard product) and

$$\Gamma(\alpha_i, \beta_j, q, k) = \frac{(\alpha_1, q)_{k-1} \cdots (\alpha_m, q)_{k-1}}{(q, q)_{k-1} (\beta_1, q)_{k-1} \cdots (\beta_n, q)_{k-1}}.$$
 (8)

It is convenient to write

$$\mathcal{H}_n^m(\alpha_1, \dots, \alpha_m; \beta_1, \dots, \beta_n; q) f(z) = \mathcal{H}_n^m(\alpha, \beta, q) f(z). \tag{9}$$

Aldweby and Darus [1] defined the operator (7) on harmonic function $f = h + \overline{g}$ given by (1) as follows

$$\mathcal{H}_{n}^{m}(\alpha,\beta,q)f(z) = \mathcal{H}_{n}^{m}(\alpha,\beta,q)h(z) + \overline{\mathcal{H}_{n}^{m}(\alpha,\beta,q)g(z)}.$$
 (10)

For more properties of operators given in (7) and (10), see [3]. We denote by $S_{\overline{H}}$ the class of functions $f = h + \overline{g}$, where

$$h(z) = z - \sum_{k=2}^{\infty} |a_k| z^k, \qquad g(z) = \sum_{k=1}^{\infty} |b_k| z^k, \qquad (|b_1| < 1).$$
 (11)

For $\gamma \geqslant 0$, $0 \leqslant \delta, \eta \leqslant 1$, $0 \leqslant \sigma < 1$ and $t \in \mathbb{R}$ let $\mathcal{S}_{\mathcal{H}}^t(\gamma, \delta, \eta, \sigma)$ denote the class of functions in $\mathcal{S}_{\mathcal{H}}$ of the type (1) such that

$$\operatorname{Re}\left\{\left(\eta e^{it} - \gamma \delta\right) - \eta e^{it} \frac{\left(\mathcal{H}_{n}^{m}(\alpha, \beta, q) f(z)\right)''}{z''} + (\gamma + \delta) \frac{\left(\mathcal{H}_{n}^{m}(\alpha, \beta, q) f(z)\right)'}{z'} + (1 - \gamma)(1 - \delta) \frac{\mathcal{H}_{n}^{m}(\alpha, \beta, q) f(z)}{z}\right\} \geqslant \sigma,$$

$$(12)$$

where

$$z' = \frac{\partial}{\partial \theta}(z) = iz, \qquad z'' = \frac{\partial^2}{\partial \theta^2}(z) = -z,$$
 (13)

and

$$(\mathcal{H}_{n}^{m}(\alpha,\beta,q)f(z))' = \frac{\partial}{\partial \theta} (\mathcal{H}_{n}^{m}(\alpha,\beta,q)f(re^{i\theta}))$$

$$= iz (\mathcal{H}_{n}^{m}(\alpha,\beta,q)h)' - iz \overline{(\mathcal{H}_{n}^{m}(\alpha,\beta,q)g)'},$$
(14)

$$\left(\mathcal{H}_{n}^{m}(\alpha,\beta,q)f(z)\right)^{"} = \frac{\partial^{2}}{\partial\theta^{2}}\left(\mathcal{H}_{n}^{m}(\alpha,\beta,q)f(re^{i\theta})\right) \\
= -z\left(\mathcal{H}_{n}^{m}(\alpha,\beta,q)h\right)^{'} - z^{2}\left(\mathcal{H}_{n}^{m}(\alpha,\beta,q)h\right)^{"} \\
- z\overline{\left(\mathcal{H}_{n}^{m}(\alpha,\beta,q)g\right)^{'}} - z^{2}\overline{\left(\mathcal{H}_{n}^{m}(\alpha,\beta,q)g\right)^{"}}.$$
(15)

Also we denote by $\mathcal{S}_{\overline{\mathcal{H}}}^t(\gamma, \delta, \eta, \sigma)$ the subclass of $\mathcal{S}_{\mathcal{H}}^t(\gamma, \delta, \eta, \sigma)$ consisting of functions $f \in \mathcal{S}_{\overline{\mathcal{H}}}$ of the type (11) which satisfy the condition (12).

2 Main Results

In this section, we first give the sufficient coefficient bounds for $f(z) \in \mathcal{S}^t_{\mathcal{H}}(\gamma, \delta, \eta, \sigma)$ and then we show these sufficient conditions are also necessary for $f(z) \in \mathcal{S}^t_{\overline{\mathcal{H}}}(\gamma, \delta, \eta, \sigma)$. By using the results of Theorem 2.1 in [9], we obtain the following Theorem.

Theorem 2.1. Suppose $f = h + \overline{g}$, h and g be given by (1) and

$$\sum_{k=2}^{\infty} \left| (\gamma + \delta)k + (1 - \gamma - \delta + \gamma \delta) - \eta k^{2} \right| \Gamma(\alpha_{i}, \beta_{j}, q, k) |a_{k}| +$$

$$\sum_{k=1}^{\infty} \left| (\gamma + \delta)k - (1 - \gamma - \delta + \gamma \delta) - \eta k^{2} \right| \Gamma(\alpha_{i}, \beta_{j}, q, k) |b_{k}| \leq 1 - \sigma.$$
(16)

Then $f(z) \in \mathcal{S}_{\mathcal{H}}^t(\gamma, \delta, \eta, \sigma)$.

Proof. By using the fact that

$$Re\{W\} \geqslant \sigma \iff |W+1-\sigma| \geqslant |W-1-\sigma|,$$

and letting

$$W = \eta e^{it} - \gamma \delta - \eta e^{it} \frac{\left(\mathcal{H}_n^m(\alpha, \beta, q) f(z)\right)''}{z''} + (\gamma + \delta) \frac{\left(\mathcal{H}_n^m(\alpha, \beta, q) f(z)\right)'}{z'} + (1 - \gamma)(1 - \delta) \frac{\mathcal{H}_n^m(\alpha, \beta, q) f(z)}{z}.$$

It is enough to show that

$$|W + 1 - \sigma| - |W - 1 - \sigma| \ge 0.$$

But by using (13), (14) and (15) we have

$$|W+1-\sigma| = \left| \eta e^{it} - \gamma \delta - \eta e^{it} \left(1 + \sum_{k=2}^{\infty} k \Gamma(\alpha_i, \beta_j, q, k) a_k z^{k-1} + \sum_{k=2}^{\infty} k(k-1) \Gamma(\alpha_i, \beta_j, q, k) a_k z^{k-1} + \sum_{k=1}^{\infty} k \Gamma(\alpha_i, \beta_j, q, k) b_k(\overline{z})^{k-1} \right.$$

$$\left. + \sum_{k=1}^{\infty} k(k-1) \Gamma(\alpha_i, \beta_j, q, k) b_k(\overline{z})^{k-1} \right)$$

$$\left. + (\gamma + \delta) \left(1 + \sum_{k=2}^{\infty} k \Gamma(\alpha_i, \beta_j, q, k) a_k z^k - \sum_{k=1}^{\infty} k \Gamma(\alpha_i, \beta_j, q, k) b_k(\overline{z})^{k-1} \right) \right.$$

$$\begin{split} &+ (1-\gamma)(1-\delta) \left(1 + \sum_{k=2}^{\infty} \Gamma(\alpha_i, \beta_j, q, k) a_k z^{k-1} \right. \\ &+ \left. \sum_{k=1}^{\infty} \Gamma(\alpha_i, \beta_j, q, k) b_k(\overline{z})^{k-1} \right) \bigg| \\ &\geqslant 2 - \sigma - \sum_{k=2}^{\infty} \left| 1 + (\gamma + \delta)(k-1) + \gamma \delta - \eta k^2 \right| \Gamma(\alpha_i, \beta_j, q, k) |a_k| \left. \left| \frac{z^k}{z} \right| \right. \\ &- \sum_{k=1}^{\infty} \left| 1 - (\gamma + \delta)(k-1) + \gamma \delta - \eta k^2 \right| \Gamma(\alpha_i, \beta_j, q, k) |b_k| \left. \left| \frac{z^k}{z} \right| \right. \end{split}$$

and

$$|W - 1 - \sigma| \leq \sigma$$

$$+ \sum_{k=2}^{\infty} |1 + (\gamma + \delta)(k - 1) + \gamma \delta - \eta k^{2} |\Gamma(\alpha_{i}, \beta_{j}, q, k)| a_{k}| \left|\frac{z^{k}}{z}\right|$$

$$+ \sum_{k=1}^{\infty} |1 - (\gamma + \delta)(k - 1) + \gamma \delta - \eta k^{2} |\Gamma(\alpha_{i}, \beta_{j}, q, k)| b_{k}| \left|\frac{z^{k}}{z}\right|,$$

where $\Gamma(\alpha_i, \beta_j, q, k)$ is defined by (8).

So by using (16), we have

$$|W+1-\sigma|-|W-1-\sigma| \geqslant$$

$$2\left[1-\sigma-\sum_{k=2}^{\infty}\left|(\gamma+\delta)k+(1-\gamma-\delta+\gamma\delta)-\eta k^{2}\right|\Gamma(\alpha_{i},\beta_{j},q,k)|a_{k}|\right]$$

$$-\sum_{k=1}^{\infty}\left|(\gamma+\delta)k-(1-\gamma-\delta+\gamma\delta)-\eta k^{2}\right|\Gamma(\alpha_{i},\beta_{j},q,k)|b_{k}|\right] \geqslant 0.$$

Remark 2.2. All the techniques are similar to the proofs of theorems in [8] and in special case on parameters we get the same results.

Remark 2.3. The coefficient bound (16) is sharp for the function

$$H(z) = z + \sum_{k=2}^{\infty} \frac{x_k}{|(\gamma + \delta)k + (1 - \gamma - \delta + \gamma\delta) - \eta k^2| \Gamma(\alpha_i, \beta_j, q, k)} z^k$$

$$+\sum_{k=1}^{\infty} \frac{\overline{y_k}}{|(\gamma+\delta)k - (1-\gamma-\delta+\gamma\delta) - \eta k^2| \Gamma(\alpha_i,\beta_j,q,k)} (\overline{z})^k,$$

where

$$\frac{1}{1-\sigma}\Big(\sum_{k=2}^{\infty}|x_k|+\sum_{k=1}^{\infty}|y_k|\Big)=1.$$

Theorem 2.4. $f = h + \overline{g} \in \mathcal{S}_{\overline{\mathcal{H}}}^t(\gamma, \delta, \eta, \sigma)$ if and only if

$$\sum_{k=2}^{\infty} \left(\left| (\gamma + \delta)k + (1 - \gamma - \delta + \gamma \delta) - \eta k^{2} \right| |a_{k}| + \left| (\gamma + \delta)k - (1 - \gamma - \delta + \gamma \delta) - \eta k^{2} \right| |b_{k}| \right) \Gamma(\alpha_{i}, \beta_{j}, q, k)$$

$$\leq 1 - \sigma - \left(2(\gamma + \delta) - (1 + \gamma \delta + \eta) \right) |b_{1}|.$$

$$(17)$$

Proof. From Theorem 2.1 $\mathcal{S}_{\overline{\mathcal{H}}}^t(\gamma, \delta, \eta, \sigma) \subset \mathcal{S}_{\mathcal{H}}^t(\gamma, \delta, \eta, \sigma)$, and since (16) is equivalent to (17) we conclude the "if part". For the "only if part", suppose that $f(z) \in \mathcal{S}_{\overline{\mathcal{H}}}^t(\gamma, \delta, \eta, \sigma)$. Then for $z = re^{i\theta} \in \mathbb{U}$, we have

$$\operatorname{Re}\left\{\left(\eta e^{it} - \gamma \delta\right) - \eta e^{it} \frac{\left(\mathcal{H}_{n}^{m}(\alpha, \beta, q) f(z)\right)''}{z''} + (\gamma + \delta) \frac{\left(\mathcal{H}_{n}^{m}(\alpha, \beta, q) f(z)\right)'}{z'} + (1 - \gamma)(1 - \delta) \frac{\mathcal{H}_{n}^{m}(\alpha, \beta, q) f(z)}{z}\right\} \geqslant \sigma,$$

$$= \operatorname{Re}\left\{\eta e^{it} - \gamma \delta\right\}$$

$$- \eta e^{it} \left(1 + \sum_{k=2}^{\infty} k \Gamma(\alpha_{i}, \beta_{j}, q, k) a_{k} z^{k-1} + \sum_{k=2}^{\infty} k(k-1) \Gamma(\alpha_{i}, \beta_{j}, q, k) a_{k} z^{k-1} + \sum_{k=1}^{\infty} k \Gamma(\alpha_{i}, \beta_{j}, q, k) b_{k}(\overline{z})^{k-1} + \sum_{k=1}^{\infty} k \Gamma(\alpha_{i}, \beta_{j}, q, k) b_{k}(\overline{z})^{k-1} + \sum_{k=1}^{\infty} k \Gamma(\alpha_{i}, \beta_{j}, q, k) a_{k} z^{k-1} - \sum_{k=1}^{\infty} k \Gamma(\alpha_{i}, \beta_{j}, q, k) b_{k}(\overline{z})^{k-1}\right)$$

$$+ (\gamma + \delta) \left(1 + \sum_{k=2}^{\infty} k \Gamma(\alpha_{i}, \beta_{j}, q, k) a_{k} z^{k-1} - \sum_{k=1}^{\infty} k \Gamma(\alpha_{i}, \beta_{j}, q, k) b_{k}(\overline{z})^{k-1}\right)$$

$$+ (1 - \gamma)(1 - \delta) \left(1 + \sum_{k=2}^{\infty} \Gamma(\alpha_{i}, \beta_{j}, q, k) a_{k} z^{k-1} - \sum_{k=1}^{\infty} k \Gamma(\alpha_{i}, \beta_{j}, q, k) a_{k} z^{k-1}\right)$$

$$+\sum_{k=1}^{\infty} \Gamma(\alpha_{i}, \beta_{j}, q, k) b_{k}(\overline{z})^{k-1} \bigg) \bigg\}$$

$$\geqslant 1 - \sum_{k=2}^{\infty} \left| (\gamma + \delta)k + (1 - \gamma - \delta + \gamma \delta) - \eta k^{2} \right| |a_{k}| \Gamma(\alpha_{i}, \beta_{j}, q, k)$$

$$+ \left(2(\gamma + \delta) - (1 + \gamma \delta + \eta) \right) |b_{1}|$$

$$+ \sum_{k=2}^{\infty} \left| (\gamma + \delta)k - (1 - \gamma - \delta + \gamma \delta) - \eta k^{2} \right| \Gamma(\alpha_{i}, \beta_{j}, q, k) |b_{k}| r^{k-1} \geqslant \sigma.$$

The above inequality holds for all $z \in \mathbb{U}$. So if $z = r \to 1$. We obtain the required result (17). Now the proof of theorem is complete.

$\mathbf{3}$ Geometric Properties

In this section we introduce extreme points of $\mathcal{S}_{\overline{\mathcal{H}}}^t(\gamma, \delta, \eta, \sigma)$ and show that this class is a convex set.

Theorem 3.1. $f = h + \overline{g} \in \mathcal{S}_{\overline{\mathcal{H}}}^t(\gamma, \delta, \eta, \sigma)$ if and only if it can be expressed by

$$f(z) = X_1 z + \sum_{k=2}^{\infty} X_k h_k(z) + \sum_{k=1}^{\infty} Y_k g_k(z), \qquad (z \in \mathbb{U}),$$
 (18)

where

$$h_k(z) = z - \frac{1 - \sigma}{|(\gamma + \delta)k + (1 - \gamma - \delta + \gamma\delta) - \eta k^2| \Gamma(\alpha_i, \beta_i, q, k)} z^k,$$

and

$$g_k(z) = \frac{1 - \sigma}{|(\gamma + \delta)k - (1 - \gamma - \delta + \gamma \delta) - \eta k^2| \Gamma(\alpha_i, \beta_j, q, k)} (\overline{z})^k.$$

Furthermore

 $\sum_{k=1}^{\infty} X_k + \sum_{k=1}^{\infty} Y_k = 1, X_k \geqslant 0, Y_k \geqslant 0 \text{ for } k = 1, 2, ..., \text{ and } \Gamma(\alpha_i, \beta_j, q, k)$ is given by (8).

Proof. If f be given by (18), then

$$f(z) = z - \sum_{k=2}^{\infty} \frac{1 - \sigma}{|(\gamma + \delta)k + (1 - \gamma - \delta + \gamma \delta) - \eta k^2| \Gamma(\alpha_i, \beta_j, q, k)} X_k z^k + \sum_{k=1}^{\infty} \frac{1 - \sigma}{|(\gamma + \delta)k - (1 - \gamma - \delta + \gamma \delta) - \eta k^2| \Gamma(\alpha_i, \beta_j, q, k)} Y_k(\overline{z})^k.$$

Since by (17), or equivalently by (16), we have

$$\sum_{k=2}^{\infty} \left| (\gamma + \delta)k + (1 - \gamma - \delta + \gamma \delta) - \eta k^{2} \right| \Gamma(\alpha_{i}, \beta_{j}, q, k) \times$$

$$\times \frac{(1 - \sigma)|X_{k}|}{\left| (\gamma + \delta)k + (1 - \gamma - \delta + \gamma \delta) - \eta k^{2} \right| \Gamma(\alpha_{i}, \beta_{j}, q, k)}$$

$$+ \sum_{k=1}^{\infty} \left| (\gamma + \delta)k - (1 - \gamma - \delta + \gamma \delta) - \eta k^{2} \right| \Gamma(\alpha_{i}, \beta_{j}, q, k) \times$$

$$\times \frac{(1 - \sigma)|Y_{k}|}{\left| (\gamma + \delta)k - (1 - \gamma - \delta + \gamma \delta) - \eta k^{2} \right| \Gamma(\alpha_{i}, \beta_{j}, q, k)}$$

$$= (1 - \sigma) \left(\sum_{k=2}^{\infty} |X_{k}| + \sum_{k=1}^{\infty} |Y_{k}| \right)$$

$$= (1 - \sigma)(1 - X_{1}) \leqslant 1 - \sigma.$$

So $f(z) \in \mathcal{S}_{\overline{\mathcal{H}}}^t(\gamma, \delta, \eta, \sigma)$. Conversely, suppose $f(z) \in \mathcal{S}_{\overline{\mathcal{H}}}^t(\gamma, \delta, \eta, \sigma)$. By letting

$$X_1 = 1 - \left(\sum_{k=2}^{\infty} X_k + \sum_{k=1}^{\infty} Y_k\right),$$

where

$$\begin{split} X_k &= \frac{\left| (\gamma + \delta)k + (1 - \gamma - \delta + \gamma \delta) - \eta k^2 \right| \Gamma(\alpha_i, \beta_j, q, k)}{1 - \sigma} |a_k|, \\ Y_k &= \frac{\left| (\gamma + \delta)k - (1 - \gamma - \delta + \gamma \delta) - \eta k^2 \right| \Gamma(\alpha_i, \beta_j, q, k)}{1 - \sigma} |b_k|, \end{split}$$

we conclude the required representation and so the proof is complete.

Theorem 3.2. If $f_n(z)$, n = 1, 2, ..., belongs to $\mathcal{S}_{\overline{\mathcal{H}}}^t(\gamma, \delta, \eta, \sigma)$, then the function $F(z) = \sum_{n=1}^{\infty} \lambda_n f_n(z)$ is also in $\mathcal{S}_{\overline{\mathcal{H}}}^t(\gamma, \delta, \eta, \sigma)$, where $f_n(z)$ is defined by

$$f_n(z) = z - \sum_{k=2}^{\infty} a_{k,n} z^k + \sum_{k=1}^{\infty} b_{k,n}(\overline{z})^k, \quad (n = 1, 2, \dots, \sum_{n=1}^{\infty} \lambda_n = 1).$$
(19)

Proof. Since $f(z) \in \mathcal{S}_{\overline{\mathcal{H}}}^t(\gamma, \delta, \eta, \sigma)$, by (17) or equivalently (16), for $n = 1, 2, \ldots$ we have

$$\sum_{k=2}^{\infty} \left| (\gamma + \delta)k + (1 - \gamma - \delta + \gamma \delta) - \eta k^{2} \right| \Gamma(\alpha_{i}, \beta_{j}, q, k) |a_{k,n}|$$

$$+ \sum_{k=1}^{\infty} \left| (\gamma + \delta)k - (1 - \gamma - \delta + \gamma \delta) - \eta k^{2} \right| \Gamma(\alpha_{i}, \beta_{j}, q, k) |b_{k,n}| \leq 1 - \sigma.$$

Also

$$F(z) = \sum_{n=1}^{\infty} \lambda_n f_n(z) = z - \sum_{k=2}^{\infty} \left(\sum_{n=1}^{\infty} \lambda_n a_{k,n} \right) z^k + \sum_{k=1}^{\infty} \left(\sum_{n=1}^{\infty} \lambda_n b_{k,n} \right) (\overline{z})^k,$$

Now according to (17) or equivalently (16), we have

$$\sum_{k=2}^{\infty} \left| (\gamma + \delta)k + (1 - \gamma - \delta + \gamma \delta) - \eta k^2 \right| \left| \sum_{n=1}^{\infty} \lambda_n a_{k,n} \right| \Gamma(\alpha_i, \beta_j, q, k)$$

$$+ \sum_{k=1}^{\infty} \left| (\gamma + \delta)k - (1 - \gamma - \delta + \gamma \delta) - \eta k^2 \right| \left| \sum_{n=1}^{\infty} \lambda_n b_{k,n} \right| \Gamma(\alpha_i, \beta_j, q, k)$$

$$= \sum_{n=1}^{\infty} \left\{ \sum_{k=2}^{\infty} \left| (\gamma + \delta)k + (1 - \gamma - \delta + \gamma \delta) - \eta k^2 \right| \Gamma(\alpha_i, \beta_j, q, k) |a_{k,n}| \right\}$$

$$+ \sum_{k=1}^{\infty} \left| (\gamma + \delta)k - (1 - \gamma - \delta + \gamma \delta) - \eta k^2 \right| \Gamma(\alpha_i, \beta_j, q, k) |b_{k,n}| \right\} \lambda_n$$

$$\geqslant (1 - \sigma) \sum_{n=1}^{\infty} \lambda_n = 1 - \sigma.$$

Remark 3.3. We note that $S_{\overline{\mathcal{H}}}^t(\gamma, \delta, \eta, \sigma)$ is a convex set.

Thus $F(z) \in \mathcal{S}_{\overline{\mathcal{H}}}^t(\gamma, \delta, \eta, \sigma)$.

References

- [1] H. Aldweby and M. Darus. A subclass of harmonic univalent functions associated with q-analogue of Dziok-Srivastava operator. ISRN Math. Anal., (2013), Art. ID 382312, 6 pp.
- [2] J. Clunie and T. Sheil-Small. Harmonic univalent functions. *Ann. Acad. Sci. Fenn. Ser. A I Math.*, 9 (1984), 3–25.
- [3] J. Dziok and H. M. Srivastava. Classes of analytic functions associated with the generalized hypergeometric function. *Appl. Math. Comput.*, 103(1) (1999), 1–13.
- [4] H. Exton. q-Hypergeometric Functions and Applications. With a foreword by L. J. Slater. Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley Sons, Inc.], New York, (1983). 347 pp. ISBN: 0-85312-491-4.
- [5] G. Gasper and M. Rahman. Basic Hypergeometric Series. With a Foreword by Richard Askey. Encyclopedia of Mathematics and its Applications, Vol. 35. Cambridge University Press, Cambridge, New York, Port Chester, Melbourne and Sydney, (1990). 287 pp. ISBN: 0-521-35049-2.
- [6] H. A. Ghany. q-Derivative of Basic Hypergeometric Series with Respect to Parameters. Int. J. Math. Anal. (Ruse), 3(33-36) (2009), 1617–1632.
- [7] F. Jackson. *q*-difference equations. *Amer. J. Math.*, 32(4) (1910), 305–314.
- [8] J. M. Jahangiri. Harmonic univalent functions defined by q-calculus operators. *Int. J. Math. Anal. Appl.*, 5(2) (2018), 39–43.
- [9] J. M. Jahangiri. Harmonic functions starlike in the unit disk. J. Math. Anal. Appl., 235(2) (1999), 470-477.
- [10] S. Najafzadeh. *q*-derivative on *p*-valent meromorphic functions associated with connected sets. *Surv. Math. Appl.*, 14 (2019), 149–158.

12

Shahram Najafzadeh

Associate Professor of Mathematics Department of Mathematics Payame Noor University Tehran, Iran

E-mail: najafzadeh1234@yahoo.ie

Zeinab Dehdast

PhD student of Mathematics Department of Mathematics Payame Noor University Tehran, Iran

E-mail: z.dehdast@gmail.com

Mohammadreza Foroutan

Assistant Professor of Mathematics Department of Mathematics Payame Noor University Tehran, Iran

E-mail: foroutan_mohammadreza@yahoo.com