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Harmonic univalent functions related to
g-derivative based on basic hypergeometric
function

Abstract. We study a family of harmonic univalent functions using
an operator involving g-derivative and hypergeometric function. Pre-
cisely we obtain a necessary and sufficient condition for functions in
this family. Extreme points and convexity of such functions are also
introduced.
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1 Introduction

Let Sy denote the class of functions which are harmonic, univalent,
complex valued and sense preserving in U = {z € C : |z| < 1} normalized
by f(0) = f,(0) — 1 =0. Each f € Sy is of the type f = h+ g where h
and g are analytic in U. We call h and g analytic part and co-analytic
part of f respectively. Also f is locally univalent and sense preserving in
U if and only if [h/(2)| > |¢/(2)| in U, see [2]. Thus, for f =h+7g € Sy,
we may consider:

hz)=z+Y apz®,  glz)=> b2, (0<bhi<1). (1)
k=2 k=1
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The g-shifted factorial for |g| < 1 defined by:

(a,q) —{1 , k=0,
R (1_04)(1—Oéq)(l—an)...(l_aqkfl)

2

, keN, @)

where N denote the set of positive integers and « is a complex number.
For complex parameters «;, 3; and ¢ where i = 1,2,...,m, j =

1,2,...,n, Bj € C\{0,—-1,-2,...} and |q| < 1, we consider the basic
hypergeometric function ,,®, (a1, ..., m; b1, .-, Fn, ¢, 2) by:

. _ > (abC.Z)k co (aqu)kz k
Bl i B B2 = 0 G (B e (o

(3)
where m =n+1, m,n € Ng = NU{0}, z € U and the ¢g-shifted factorial
(c, @)k is given in (2).

We note that

lim (m%(qal, N N L N 1)”"*7”2))
q—1- (4)
an(Oél, cee )am;ﬁl) cee )5717(]72)7
where ., Fp (a1, ...y am; B, - - .

, Bn, q, 2) is the well-known hypergeometric
function. For more details, one may refer to [3, 5] and [0].

The g-derivative of a function G is defined by:

0,(6() = I gz, o)

We can easily observe that:

()

where [k], = 1=q"

. is the g-integer number, see [7] and [3].
We conclude that:

lim 0,(G(2) = &'(2).
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For more properties of g-derivative, see [1] and [7]. Now, we consider
the linear operator:

Hp' (s s By Bas @) f(2)
= (2 m®n(a1,...,am;B1,...,Bn; ¢, 2)) * f(2)

o
=z+ Zr(au /6]7 q, k)ak'zk’
k=2

(7)

[13%

where “x” stands for well-known convolution (or Hadamard product)
and:

(alv q)k—l T (Oém, Q)k‘—l (8)

Hoi B0 ) = G Bt (B ot

It is convenient to write:

Hnm<a17 oo 704m;B17 oo 75717Q)f(z) = H'rT{L(O@ﬁ?q) (9)

H. Aldweby and M. Darus [!] were defined the operator (7) on harmonic
function f = h + g given by (1) as follows:

Hp' (e, B,9) f(2) = Hy'(a, B, q)h(2) + Hi(a, B,q)g9(2).  (10)

For more properties of operators given in (7) and (10), see [3].
We denote by Sz the class of functions f = h + g, where:

) =23l gx) =St (bl <1, (1)
k=2 k=1

Fory >0,0<0,n<1,0<o0<1landteRlet S%('y,(S,n,a) denote
the class of functions in Sy of the type (1) such that:

L (0, B,9) f(2))" (e (@, 8,9)f(2))"

Re { (neit —v6) — ne*t T + (y+9)
Hy' (o, 8,9) f(2) }
z

+(1=7)(1—d)

Z 0

)

(12)



where

! __ 6 s n __ 82 —
z = @(2) =1z, = @(2) = -z (13)
and
(Hi (e 8, 0)F(2))" = 55 (M (e, B, @) f(re™)) 14)

= iz(H(c, B,q)h) — iz(Hp(a, B,q)g)",

(HZL(O" B7Q)f(z))” = 7(7‘[,?(01,6, q)f(rew))
= 2(H(a, B,q)h)" — 22 (H™ (v, B, q)h)" (15)
—2(Hy (0 B,0)g)" — 22 (M (e, B,0)9)".

Also we denote by S%(’y, 8,1m,0) the subclass of % (v,8,7,0) consisting
of functions f € S;; of the type (11) which satisfy the condition (12).

2 Main results

In this section, we first give the sufficient coefficient bounds for f(z) €
St/ (v,6,m,0) and then we show these sufficient conditions are also nec-
essary for f(z) € S%(’y, 0,m,0).

Theorem 2.1. Suppose f =h+g, h and g be given by (1) and:

o0

k=2

oo (16)
ST+ 0)k — (1=~ — 6 +48) — nk?| T(ai, By, q. k) |be| <10
k=1

Then f(2) € Si(7,8,1,0).

Proof. By using the fact that:

Re{W} > o<« |W+1l—-0|>2|W-1-0]
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and letting:

W = et — ’y(S) — peit (H?(aa i;,Q)f(Z))

(H(a, B,q) f(2))

Hy'(a,8,9)f(2)

+ (v+9)

+(1=)(1-9)
it is enough to show that:
W+1l—0|-|W—-1-02>0

But by using (13), (14) and (15) we have:

[e.e]
W+1—o|=|nett —~6 —ne [ 1+ kD (o, B;, g, k)arz"""+
Ui n J

k=2

+Zk _1 alaBJ7Q7 )akzk 1+Zkr‘ Oéhﬁ]aq: )bk( )

k=1

+Zk — )T (e, Bj, ¢, k)b ()k1>

(7+5< +Zkr @, Bj, 4, k)ayz —Z"T s By, 4 K)ok(Z)" >

k=2 k=1

+ (1 =7)(1-9) <1 + > T, By, ¢, k)awz "+ T, B, 4, k)bk(z)k1> ‘
P k=1

o) k

z

>2-0-Y |1+ (v+0)(k—1)+~5 — nk®|T(ai, Bj,q, k)|a| | =

=2

e k
~ ST - (74 8)(k — 1) + 76 — nk?| T(aw, B, q K)ol | =

and

W —1—0[ <o+ Y [T+ (y+06)(k—1)+6 —nk?| T(c, B, . k) |a] =

k ’
k=2




Zk
>
z

+ 3 1= (v + 8)(k — 1) + 46 — nk?| T(as, 5, ¢, k)b
k=1

where I'(ay, 55, q, k) is defined by (8).
So by using (16), we have:

W4+1l—0|—-|W—-1-0|>

2[1 —o =Y (v + 0k + (L= =6 +748) — nk?| T(cu, B, ¢, k)lax

k=2
[ee]
= (v + 0k — (1=~ =65 +76) — nk*| D(as, B, ¢, k) |bx| | > 0.
k=1
]

Remark 2.2. The coefficient bound (16) is sharp for the function:

o T k
H(z) =
) Z+kzz|(7+5)k+(1—7—5+v5)—nkzlf(%ﬁjaqak)z

o0
Yk —\k
+ zZ)",
D ey e e P PSS

where
1 o0 o0
(Y lanl + Y ll) = 1.
k=2 k=1

Theorem 2.3. Let f=h+g¢c Stﬂ('y, 8,m,0) if and only if:

[e.o]

Z<\(7+5)k+(1—7—5+vé)—nk2\ ||

k=2

17
+ ‘(”)/—F(S)k - (1 0 A (54—75) —17/{2| ]bk\>1“(ai,ﬂj,q,k) ( )
<l—0—(2(v+6) — (1 +~5+mn))bi].

Proof. From Theorem 77 S%(’y, é,m,0) C S4(v,6,m,0), and since (16)
is equivalent to (17) we conclude the “if part”. For the “only if part”,
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suppose that f(z) € S%(ﬂy7 8,m,0). Then for z = re? € U, we have:

/

w (Ml B0 fC)" | s (e .0)f(2)

PACERLON

Re { (neit — 75) —ne

=0

)

+(1=7)(1-

= Re {neit -0

— e’ (1 + > k(i By, ¢, k)arz"" ) k(k = DT (s, B, q, k)arz"""
k=2 k=2

+ > K (i, By, ¢, k)br(2)" 7+ D k(k = D (o, B, g, k)bk(2>k_1)
k=1

k=1

+(v+9) <1 + ) kD (ai, By, g, k)arz" " =Y kT (i, B, 4, k)bk(z)k_1>
k=1

k=2

+ (1 —7)(1-90) <1 + ) T(ai, B¢, ka2 + ) Tl(ai, 8,0, k)bk(z)k_1> }

k=2 k=1
>1- (v +0)k+ (1 —5—0+70) — nk?| |ax|T (e, Bj, ¢, k)
k=2

+ (2(y+0) — A +~d+n)) b1

+ 3¢y + 00k — (1= — 6 +~6) — k2| D(as, B, ¢, B) bwlr* 1 > o
k=2

The above inequality holds for all z € U. So if z = r — 1. We obtain
the required result (17). Now the proof of theorem is complete. g
3 Geometric properties

In this section we introduce extreme points of S%(% d,m,0) and show
that this class is a convex set.

Theorem 3.1. f = h+g € S%(’y, 0,m,0) if and only if it can be expressed



of the type:

f(z) = XlZ+Zthk +ZYk9k (z €U, (18)
k=2
where
hi(z) = S . (19)

(v + 0k + (1=~ =6 +70) — k2| T(ay, Bj, q, k)
and

l1—0

9 = T o = (1= =6+ 6) — k2 (s, By, F)

Xl p 07}/1 = 07X1 +ZZO:2X]€ +ZZO:1Y’€ = 17Xk: = 07Yk = 0 fOT
k=2,3,..., and I'(oy, B, q, k) is given by (8).

Proof. If f be given by (18), then:

@*  (20)

> 1—0
kz_z\ (v +0)k+ (1 =y —0+70) — nk?| (s, Bj, ¢, k)

szk

1—0
Yi(2)F.
+Z!7+6 (L =7 —0+70) —nk? (i, Bj, q, k) (2)

Since by (17), or equivalently by (16), we have:

Z|(7+5)k+(1 —y—=8+79) —nk2|r(ai,ﬁjaq7k)x
k=2

(1 —0)| Xyl
I(v +0)k+(1—~—0+70) —nk?T'(ay, Bj,q, k)

+Z|’y+5 (I—=y—=350+~9) nk2|I‘(ai,6j,q,k:)><

" (1—0)|Vi
(v +0)k— (1=~ —09+76) —nk?| T (v, Bj, q, k)

- (3 Xl +Z|Yk|)

k=2
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—(1-0)(1-X)<1-0.

So f(2) € St (7,8,1,0).
Conversely, suppose f(z) € S%(%&,n,o). By putting:

oo o0
X, =1— (ZXkJrZYk),
k=2 k=1

where
Xy = 1 |lak],
—0
(v + 8)k — (L =y — 6 +6) — nk?| T(ew, B, ¢, k)
Yi = 1 |b|
-0
We conclude the required representation, so the proof is complete. Il

Theorem 3.2. If f,(z), n = 1,2,..., belongs to S%(’y,é,n,a), then
the function F(z) =Y 2 A fn(2) is also in S%(’y,d,n,a), where fp(z)
defined by:
2)=2z— Zakmzk + Zbk,n(E)k, (n =1,2,..., Y A= 1).
k=2 k=1
(21)

Proof. Since f(z) € Stﬂ('y, d,m,0), by (17) or equivalently (16), for
n=1,2,... we have:

M8

B
[|

2

) (v + Ok — (1 =y — 6 +48) — nk?| T(c, B, ¢, k) [br| < 1— 0.
k=1

Also

o

:ni:o:l)\nfn = i(ZNx%n)Z +Z(nz:)\ bkn) )

k=2 n=1



Now according to (17) or equivalently (16), we have:

Z Z )\nak n

k=2
n=1

o0
{Z\w&m 1— 5 =38 +78) — nk?| T(ew, By, q, k) |ag,n]
k=2

,7_|_5]{;_|_ 1—~— (54—’}/(5 nk‘Q azaﬁja% )

Mz i nbnﬂngg

+> [(v+80)k—(1—v—6+78) —nk*|I(cy, Bj. q, k)\bk,n|})\n

2(170)2)\71:170.
n=1

Thus F(z) € S%(’y, o,m,o). O

e
Il
—

Remark 3.3. We note that S%(’y, d,m,0) is a convex set.
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