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1 Introduction

Let B (H) be the C∗–algebra of all bounded linear operators on a Hilbert
space H. As customary, we reserve m, M for scalars and 1H for the
identity operator on H. A self-adjoint operator A is said to be positive
(written A ≥ 0) if 〈Ax, x〉 ≥ 0 holds for all x ∈ H also an operator A
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is said to be strictly positive (denoted by A > 0) if A is positive and
invertible. If A and B are self-adjoint, we write B ≥ A in case B−A ≥ 0.
The Gelfand map f (t) 7→ f (A) is an isometrical ∗–isomorphism between
the C∗–algebra C (σ (A)) of continuous functions on the spectrum σ (A)
of a selfadjoint operator A and the C∗–algebra generated by A and the
identity operator 1H. If f, g ∈ C (σ (A)), then f (t) ≥ g (t) (t ∈ σ (A))
implies that f (A) ≥ g (A).

For A,B ∈ B (H), A ⊕ B is the operator defined on B (H⊕H) by(
A 0
0 B

)
. A linear map Φ : B (H) → B (K) is positive if Φ (A) ≥ 0

whenever A ≥ 0. It’s said to be unital if Φ (1H) = 1K. A continuous
function f defined on the interval J is called an operator convex function
if f ((1− v)A+ vB) ≤ (1− v) f (A) + vf (B) for every 0 ≤ v ≤ 1 and
for every pair of bounded self-adjoint operators A and B whose spectra
are both in J .

Hansen et al. [5] showed if f : J → R is an operator convex function,
A1, . . . , An ∈ B (H) are self-adjoint operators with the spectra in J ,
and Φ1, . . . ,Φn : B (H) → B (K) are positive linear mappings such that∑n

i=1 Φi (1H) = 1K, then

f

(
n∑

i=1

Φi (Ai)

)
≤

n∑
i=1

Φi (f (Ai)). (1)

Though in the case of convex function the inequality (1) does not hold
in general, we have the following estimate [4, Lemma 2.1]:

f

(〈
n∑

i=1

Φi (Ai)x, x

〉)
≤

〈
n∑

i=1

Φi (f (Ai))x, x

〉
(2)

for any unit vector x ∈ K. For recent results treating the Jensen operator
inequality, we refer the reader to [6, 8, 9, 10].

Remark 1.1. It is shown in [12, Theorem 3] that if Φ : B (H)→ B (K)
is a unital positive linear map, A ∈ B (H) is a positive operator with the
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Cartesian decomposition A = B + iC, then for any unit vector x ∈ K,

f (〈Φ (A)x, x〉) ≤


f

((〈
Φ(B)2x, x

〉
+ 〈Φ (C)x, x〉2

) 1
2

)
f

((
〈Φ (B)x, x〉2 +

〈
Φ(C)2x, x

〉) 1
2

)
≤ 〈Φ (f (A))x, x〉 ,

where f is a non-negative function on [0,∞), such that g (t) = f
(√
t
)

is
convex.
As noticed by Dragomir [3], if A is a positive operator, then C = 0 and
B = A. Thus, the above-mentioned inequality will be reduced to

f (〈Φ (A)x, x〉) ≤ 〈Φ (f (A))x, x〉 .

Of course, this is also true if A is self-adjoint. The following result
provides the analogue of [12, Theorem 3] in the case of A ∈ B (H) is an
arbitrary operator. Let the assumptions above hold. Then

g
(
|〈Φ (A)x, x〉|2

)
= g

(
〈Φ (B)x, x〉2 + 〈Φ (C)x, x〉2

)
≤ g

(〈
Φ(B)2x, x

〉
+ 〈Φ (C)x, x〉2

)
≤ g

(〈
Φ(B)2 + Φ(C)2x, x

〉)
≤ g

(〈
Φ
(
B2
)

+ Φ
(
C2
)
x, x

〉)
= g

(〈
Φ
(
B2 + C2

)
x, x

〉)
= g

(〈
Φ

(
|A|2 + |A∗|2

2

)
x, x

〉)

≤

〈
Φ

(
g

(
|A|2 + |A∗|2

2

))
x, x

〉
,

where the first and the second inequality follows from the Cauchy–
Schwarz inequality and the third inequality obtained from the Kadison’s
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inequality [1, 2.3.2 Theorem]. So,

g
(
|〈Φ (A)x, x〉|2

)
≤ g

(〈
Φ(B)2x, x

〉
+ 〈Φ (C)x, x〉2

)
≤

〈
Φ

(
g

(
|A|2 + |A∗|2

2

))
x, x

〉
.

On account of the assumption on f , we get

f (|〈Φ (A)x, x〉|) ≤ f
((〈

Φ(B)2x, x
〉

+ 〈Φ (C)x, x〉2
) 1

2

)

≤

〈
Φ

f
( |A|2 + |A∗|2

2

) 1
2

x, x

〉
.

Similarly, we have

f (|〈Φ (A)x, x〉|) ≤ f
((
〈Φ (B)x, x〉2 +

〈
Φ(C)2x, x

〉) 1
2

)

≤

〈
Φ

f
( |A|2 + |A∗|2

2

) 1
2

x, x

〉
.

In the current paper extensions of Jensen-type inequalities for the
continuous function of self-adjoint operators on complex Hilbert spaces
are given. We obtain some interesting inequalities which generalize the
results in [7]. We emphasize that our method in this paper is entirely
different from that appeared in [13] and [14].

2 Main Results

Let A ∈ B (H) be a self-adjoint operator with σ (A) ⊆ [m,M ], and let
f be a convex function on [m,M ], then from [11], we have for any unit
vector x ∈ H,

f (〈Ax, x〉) ≤ 〈f (A)x, x〉 .
Replace A with Φ (A), where Φ : B (H) → B (K) is a unital positive
linear map, we get

f (〈Φ (A)x, x〉) ≤ 〈f (Φ (A))x, x〉 (3)
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for any unit vector x ∈ K. Assume that A1, . . . , An are self-adjoint
operators on H with spectra in J and Φ1, . . . ,Φn : B (H) → B (K) are
positive linear maps with

∑n
i=1 Φi (1H) = 1K. Now apply inequality

(3) to the self-adjoint operator A on the Hilbert space H ⊕ · · · ⊕ H
defined by A = A1 ⊕ · · · ⊕An and the positive linear map Φ defined on
B (H⊕ · · · ⊕ H) by Φ (A) = Φ1 (A1)⊕ · · · ⊕ Φn (An). Thus,

f

(〈
n∑

i=1

Φi (Ai)x, x

〉)
≤

〈
f

(
n∑

i=1

Φi (Ai)

)
x, x

〉
. (4)

More generalization is discussed as follows:

Lemma 2.1. Let f : J → R be a convex and differentiable function on
o
J

(the interior of J) whose derivative f ′ is continuous on
o
J , let Ai ∈ B (H)

self-adjoint operators with the spectra in [m,M ] ⊂
o
J for (i = 1, . . . , n),

and let Φ1, . . . ,Φn : B (H)→ B (K) be positive linear mappings such that∑n
i=1 Φi (1H) = 1K. Then for any unit vector x ∈ K,〈

n∑
i=1

Φi (f (Ai))x, x

〉
− f

(〈
n∑

i=1

Φi (Ai)x, x

〉)

≤

〈
n∑

i=1

Φi

(
f ′ (Ai)Ai

)
x, x

〉

−

〈
n∑

i=1

Φi (Ai)x, x

〉〈
n∑

i=1

Φi

(
f ′ (Ai)

)
x, x

〉
.

Proof. Since f is convex and differentiable on
o
J , then we have for any

t, s ∈ [m,M ],

f ′ (s) (t− s) ≤ f (t)− f (s) ≤ f ′ (t) (t− s) .

It is equivalent to

f ′ (s) t− f ′ (s) s ≤ f (t)− f (s) ≤ f ′ (t) t− f ′ (t) s. (5)

If we fix s ∈ [m,M ] and apply the continuous functional calculus for Ai

(i = 1, . . . , n), we get

f ′ (s)Ai − f ′ (s) s1H ≤ f (Ai)− f (s)1H ≤ f ′ (Ai)Ai − sf ′ (Ai) .
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Applying the positive linear mappings Φi and summing on i from 1 to
n, this implies

f ′ (s)
n∑

i=1

Φi (Ai)− f ′ (s) s1K ≤
n∑

i=1

Φi (f (Ai))− f (s)1K

≤
n∑

i=1

Φi

(
f ′ (Ai)Ai

)
− s

n∑
i=1

Φi

(
f ′ (Ai)

)
.

Therefore, for any unit vector x ∈ K, we have

f ′ (s)

〈
n∑

i=1

Φi (Ai)x, x

〉
− f ′ (s) s

≤

〈
n∑

i=1

Φi (f (Ai))x, x

〉
− f (s)

≤

〈
n∑

i=1

Φi

(
f ′ (Ai)Ai

)
x, x

〉
− s

〈
n∑

i=1

Φi

(
f ′ (Ai)

)
x, x

〉
.

Since
∑n

i=1 Φi (1H) = 1K and σ (Ai) ⊆ [m,M ], then σ (
∑n

i=1 Φi (Ai)) ⊆
[m,M ]. Thus, by substituting s = 〈

∑n
i=1 Φi (Ai)x, x〉, we deduce the

desired result. �
We now have all the tools needed to write the proof of the first

theorem.

Theorem 2.2. Let all the assumptions of Lemma 2.1 hold. Then

n∑
i=1

Φi (f (Ai)) ≤ f

(
n∑

i=1

Φi (Ai)

)
+ δ1K

where

δ = sup
x∈K
‖x‖=1

{〈
n∑

i=1

Φi

(
f ′ (Ai)Ai

)
x, x

〉
−

〈
n∑

i=1

Φi (Ai)x, x

〉

×

〈
n∑

i=1

Φi

(
f ′ (Ai)

)
x, x

〉}
.
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Proof. It follows from the assumptions that

0 ≤

〈
n∑

i=1

Φi (f (Ai))x, x

〉
− f

(〈
n∑

i=1

Φi (Ai)x, x

〉)

≤

〈
n∑

i=1

Φi

(
f ′ (Ai)Ai

)
x, x

〉

−

〈
n∑

i=1

Φi (Ai)x, x

〉〈
n∑

i=1

Φi

(
f ′ (Ai)

)
x, x

〉

≤ sup
x∈K
‖x‖=1

{〈
n∑

i=1

Φi

(
f ′ (Ai)Ai

)
x, x

〉
−

〈
n∑

i=1

Φi (Ai)x, x

〉

×

〈
n∑

i=1

Φi

(
f ′ (Ai)

)
x, x

〉}
= δ,

thanks to Lemma 2.1. Therefore,

〈
n∑

i=1

Φi (f (Ai))x, x

〉
≤ f

(〈
n∑

i=1

Φi (Ai)x, x

〉)
+ δ

for any unit vector x ∈ K.
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Now we can write,〈
n∑

i=1

Φi (f (Ai))x, x

〉
≤ f

(〈
n∑

i=1

Φi (Ai)x, x

〉)
+ δ

≤

〈
f

(
n∑

i=1

Φi (Ai)

)
x, x

〉
+ δ (by (4))

=

〈
f

(
n∑

i=1

Φi (Ai)

)
x, x

〉
+ δ 〈x, x〉

(since ‖x‖ = 1)

=

〈
f

(
n∑

i=1

Φi (Ai)

)
x, x

〉
+ 〈δ1Kx, x〉

=

〈
f

(
n∑

i=1

Φi (Ai)

)
+ δ1Kx, x

〉
for any unit vector x ∈ K.
By replacing x by y

‖y‖ where y is any vector in K, we deduce the desired
inequality. �

A kind of a converse of Theorem 2.2 can be considered as follows.

Theorem 2.3. Let all the assumptions of Lemma 2.1 hold with the
additional condition that f is increasing. Then

f

(
n∑

i=1

Φi (Ai)

)
≤

n∑
i=1

Φi (f (Ai)) + ζ1K

where

ζ = sup
x∈K
‖x‖=1

{〈
f ′

(
n∑

i=1

Φi (Ai)

)
n∑

i=1

Φi (Ai)x, x

〉
−

〈
n∑

i=1

Φi (Ai)x, x

〉

×

〈
f ′

(
n∑

i=1

Φi (Ai)

)
x, x

〉}
.

Proof. Fix t ∈ [m,M ]. Since [m,M ] contains the spectra of the Ai for
i = 1, . . . , n and

∑n
i=1 Φi (1H) = 1K, so the spectra of

∑n
i=1 Φi (Ai) is
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also contained in [m,M ]. Then we may replace s in the inequality (5)
by
∑n

i=1 Φi (Ai), via a functional calculus to get

f

(
n∑

i=1

Φi (Ai)

)
− f (t)1K ≤ f ′

(
n∑

i=1

Φi (Ai)

)
n∑

i=1

Φi (Ai)

− tf ′
(

n∑
i=1

Φi (Ai)

)
.

This inequality implies, for any x ∈ K with ‖x‖ = 1,

〈
f

(
n∑

i=1

Φi (Ai)

)
x, x

〉
− f (t)

≤

〈
f ′

(
n∑

i=1

Φi (Ai)

)
n∑

i=1

Φi (Ai)x, x

〉
− t

〈
f ′

(
n∑

i=1

Φi (Ai)

)
x, x

〉
.

(6)
Substituting t with 〈

∑n
i=1 Φi (Ai)x, x〉 in (6). Thus,

0 ≤

〈
f

(
n∑

i=1

Φi (Ai)

)
x, x

〉
− f

(〈
n∑

i=1

Φi (Ai)x, x

〉)
(by (4))

≤

〈
f ′

(
n∑

i=1

Φi (Ai)

)
n∑

i=1

Φi (Ai)x, x

〉

−

〈
n∑

i=1

Φi (Ai)x, x

〉〈
f ′

(
n∑

i=1

Φi (Ai)

)
x, x

〉

≤ sup
x∈K
‖x‖=1

{〈
f ′

(
n∑

i=1

Φi (Ai)

)
n∑

i=1

Φi (Ai)x, x

〉

−

〈
n∑

i=1

Φi (Ai)x, x

〉〈
f ′

(
n∑

i=1

Φi (Ai)

)
x, x

〉}
= ζ.
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On the other hand,

〈
f

(
n∑

i=1

Φi (Ai)

)
x, x

〉

≤ f

(〈
n∑

i=1

Φi (Ai)x, x

〉)
+ ζ

≤

〈
n∑

i=1

Φi (f (Ai))x, x

〉
+ ζ (by (2))

for any unit vector x ∈ K, and the proof is complete. �

3 Some Applications

In this section, we collect some consequences of Theorems 2.2 and 2.3.
(I) By setting f (t) = tp (p ≥ 1) in Theorems 2.2 and 2.3 we find that:

n∑
i=1

Φi (Ap
i ) ≤

(
n∑

i=1

Φi (Ai)

)p

+ pδ1K (7)

where

δ = sup
x∈K
‖x‖=1

{〈
n∑

i=1

Φi (Ap
i )x, x

〉
−

〈
n∑

i=1

Φi (Ai)x, x

〉

×

〈
n∑

i=1

Φi

(
Ap−1

i

)
x, x

〉}
,

and (
n∑

i=1

Φi (Ai)

)p

≤
n∑

i=1

Φi (Ap
i ) + pζ1K (8)
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where

ζ = sup
x∈K
‖x‖=1

{〈(
n∑

i=1

Φi (Ai)

)p

x, x

〉
−

〈
n∑

i=1

Φi (Ai)x, x

〉

×

〈(
n∑

i=1

Φi (Ai)

)p−1

x, x

〉 .

whenever A1, . . . , An ∈ B (H) are positive operators and Φ1, . . . ,Φn :
B (H)→ B (K) positive linear mappings such that

∑n
i=1 Φi (1H) = 1K.

If the operators A1, . . . , An are strictly positive, then (7) and (8) are
also true for p < 0.
(II) Assume that w1, . . . , wn are positive scalars such that

∑n
i=1wi = 1.

If we apply Theorems 2.2 and 2.3 for positive linear mappings Φi :
B (H)→ B (H) determined by Φi : T 7→ wiT (i = 1, . . . , n), we get

n∑
i=1

wif (Ai) ≤ f

(
n∑

i=1

wiAi

)
+ δ1H

where

δ = sup
x∈H
‖x‖=1

{〈
n∑

i=1

wif
′ (Ai)Aix, x

〉
−

〈
n∑

i=1

wiAix, x

〉

×

〈
n∑

i=1

wif
′ (Ai)x, x

〉}
,

and

f

(
n∑

i=1

wiAi

)
≤

n∑
i=1

wif (Ai) + ζ1H

where

ζ = sup
x∈H
‖x‖=1

{〈
f ′

(
n∑

i=1

wiAi

)
n∑

i=1

wiAix, x

〉
−

〈
n∑

i=1

wiAix, x

〉

×

〈
f ′

(
n∑

i=1

wiAi

)
x, x

〉}
.
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Choi’s inequality [2, Proposition 4.3] says that

Φ (B) Φ(A)−1Φ (B) ≤ Φ
(
BA−1B

)
(9)

whenever B is self-adjoint and A is positive invertible. We shall show
the following complementary inequality of (9):

Proposition 3.1. Let A,B ∈ B (H) such that B is self-adjoint and A is
positive invertible, and let Φ : B (H)→ B (K) be a unital positive linear
mapping. Then

Φ
(
BA−1B

)
≤ Φ (B) Φ(A)−1Φ (B) + 2δΦ (A) (10)

where

δ = sup
x∈K
‖x‖=1

{〈
Φ(A)−

1
2 Φ
(
BA−1B

)
Φ(A)−

1
2x, x

〉

−
〈

Φ(A)−
1
2 Φ (B) Φ(A)−

1
2x, x

〉2}
.

Proof. It follows from Theorem 2.2 that

Ψ
(
T 2
)
≤ Ψ(T )2 + 2δ1K (11)

where

δ = sup
{〈

Ψ
(
T 2
)
x, x

〉
− 〈Ψ (T )x, x〉2 : x ∈ K; ‖x‖ = 1

}
.

To a fixed positive A ∈ B (H) we set

Ψ (X) = Φ(A)−
1
2 Φ
(
A

1
2XA

1
2

)
Φ(A)−

1
2

and notice that Ψ : B (H) → B (K) is a unital linear map. Now, if

T = A−
1
2BA−

1
2 , we infer from (11) that

Φ(A)−
1
2 Φ
(
BA−1B

)
Φ(A)−

1
2 ≤ Φ(A)−

1
2 Φ (B) Φ(A)−1Φ (B) Φ(A)−

1
2

+ 2δ1K
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where
δ = sup

x∈K
‖x‖=1

{〈
Φ(A)−

1
2 Φ
(
BA−1B

)
Φ(A)−

1
2x, x

〉

−
〈

Φ(A)−
1
2 Φ (B) Φ(A)−

1
2x, x

〉2}
.

By multiplying from the left and from the right with Φ(A)
1
2 we obtain

(10). �
The parallel sum of two positive operators A, B is defined as the operator

A : B =
(
A−1 +B−1

)−1
.

A simple calculation shows that (see, e.g., [1, (4.6) and (4.7)])

A : B = A−A(A+B)−1A = B −B(A+B)−1B. (12)

If Φ is any positive linear map, then (see [1, Theorem 4.1.5])

Φ (A : B) ≤ Φ (A) : Φ (B) . (13)

The following result gives a reverse of inequality (13).

Proposition 3.2. Let A,B ∈ B (H) positive invertible operators and let
Φ : B (H)→ B (K) be unital positive linear mapping. Then

Φ (A) : Φ (B) ≤ Φ (A : B) + 2δΦ (A+B)

where

δ = sup
{〈

Φ(A+B)−
1
2 Φ
(
A(A+B)−1A

)
Φ(A+B)−

1
2x, x

〉
−
〈

Φ(A+B)−
1
2 Φ (A) Φ(A+B)−

1
2x, x

〉2
: x ∈ K; ‖x‖ = 1

}
.

Proof. Proposition 3.1 easily implies

Φ
(
A(A+B)−1A

)
≤ Φ (A) Φ(A+B)−1Φ (A) + 2δΦ (A+B) (14)

where

δ = sup
{〈

Φ(A+B)−
1
2 Φ
(
A(A+B)−1A

)
Φ(A+B)−

1
2x, x

〉
−
〈

Φ(A+B)−
1
2 Φ (A) Φ(A+B)−

1
2x, x

〉2
: x ∈ K; ‖x‖ = 1

}
.
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Then we have

Φ (A) : Φ (B) = Φ (A)− Φ (A) (Φ (A) + Φ (B))−1Φ (A) (by (12))

= Φ (A)− Φ (A) Φ(A+B)−1Φ (A)

(by the linearity of Φ)

≤ Φ (A)− Φ
(
A(A+B)−1A

)
+ 2δΦ (A+B)

(by (14))

= Φ
(
A−A(A+B)−1A

)
+ 2δΦ (A+B)

(by the linearity of Φ)

= Φ (A : B) + 2δΦ (A+B) .

Hence the conclusions follow. �
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