Operator Jensen's Type Inequalities for Convex Functions

M. Shah Hosseini*
Shahr-e-Qods Branch, Islamic Azad University
H. R. Moradi
Mashhad Branch, Islamic Azad University
B. Moosavi
Safadasht Branch, Islamic Azad University

Abstract

This paper is mainly devoted to studying operator Jensen inequality. More precisely, a new generalization of Jensen inequality and its reverse version for convex (not necessary operator convex) functions have been proved. Several special cases are discussed as well.

AMS Subject Classification: Primary 47A63, Secondary 26A51, 26D15, 26B25, 39B62.
Keywords and Phrases: Operator order, Jensen's inequality, convex functions, self-adjoint operators, positive operators.

1 Introduction

Let $\mathcal{B}(\mathcal{H})$ be the C^{*}-algebra of all bounded linear operators on a Hilbert space \mathcal{H}. As customary, we reserve m, M for scalars and $\mathbf{1}_{\mathcal{H}}$ for the identity operator on \mathcal{H}. A self-adjoint operator A is said to be positive (written $A \geq 0$) if $\langle A x, x\rangle \geq 0$ holds for all $x \in \mathcal{H}$ also an operator A

[^0]is said to be strictly positive (denoted by $A>0$) if A is positive and invertible. If A and B are self-adjoint, we write $B \geq A$ in case $B-A \geq 0$. The Gelfand map $f(t) \mapsto f(A)$ is an isometrical $*$-isomorphism between the C^{*}-algebra $C(\sigma(A))$ of continuous functions on the spectrum $\sigma(A)$ of a selfadjoint operator A and the C^{*}-algebra generated by A and the identity operator $\mathbf{1}_{\mathcal{H}}$. If $f, g \in C(\sigma(A))$, then $f(t) \geq g(t)(t \in \sigma(A))$ implies that $f(A) \geq g(A)$.

For $A, B \in \mathcal{B}(\mathcal{H}), A \oplus B$ is the operator defined on $\mathcal{B}(\mathcal{H} \oplus \mathcal{H})$ by $\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$. A linear map $\Phi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ is positive if $\Phi(A) \geq 0$ whenever $A \geq 0$. It's said to be unital if $\Phi\left(\mathbf{1}_{\mathcal{H}}\right)=\mathbf{1}_{\mathcal{K}}$. A continuous function f defined on the interval J is called an operator convex function if $f((1-v) A+v B) \leq(1-v) f(A)+v f(B)$ for every $0 \leq v \leq 1$ and for every pair of bounded self-adjoint operators A and B whose spectra are both in J.

Hansen et al. [5] showed if $f: J \rightarrow \mathbb{R}$ is an operator convex function, $A_{1}, \ldots, A_{n} \in \mathcal{B}(\mathcal{H})$ are self-adjoint operators with the spectra in J, and $\Phi_{1}, \ldots, \Phi_{n}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ are positive linear mappings such that $\sum_{i=1}^{n} \Phi_{i}\left(\mathbf{1}_{\mathcal{H}}\right)=\mathbf{1}_{\mathcal{K}}$, then

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) \leq \sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right) \tag{1}
\end{equation*}
$$

Though in the case of convex function the inequality (1) does not hold in general, we have the following estimate [4, Lemma 2.1]:

$$
\begin{equation*}
f\left(\left\langle\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle\right) \leq\left\langle\sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right) x, x\right\rangle \tag{2}
\end{equation*}
$$

for any unit vector $x \in \mathcal{K}$. For recent results treating the Jensen operator inequality, we refer the reader to $[6,8,9,10]$.

Remark 1.1. It is shown in $[12$, Theorem 3] that if $\Phi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ is a unital positive linear map, $A \in \mathcal{B}(\mathcal{H})$ is a positive operator with the

Cartesian decomposition $A=B+i C$, then for any unit vector $x \in \mathcal{K}$,

$$
\begin{aligned}
f(\langle\Phi(A) x, x\rangle) & \leq\left\{\begin{array}{l}
f\left(\left(\left\langle\Phi(B)^{2} x, x\right\rangle+\langle\Phi(C) x, x\rangle^{2}\right)^{\frac{1}{2}}\right) \\
f\left(\left(\langle\Phi(B) x, x\rangle^{2}+\left\langle\Phi(C)^{2} x, x\right\rangle\right)^{\frac{1}{2}}\right)
\end{array}\right. \\
& \leq\langle\Phi(f(A)) x, x\rangle,
\end{aligned}
$$

where f is a non-negative function on $[0, \infty)$, such that $g(t)=f(\sqrt{t})$ is convex.
As noticed by Dragomir [3], if A is a positive operator, then $C=0$ and $B=A$. Thus, the above-mentioned inequality will be reduced to

$$
f(\langle\Phi(A) x, x\rangle) \leq\langle\Phi(f(A)) x, x\rangle .
$$

Of course, this is also true if A is self-adjoint. The following result provides the analogue of [12, Theorem 3] in the case of $A \in \mathcal{B}(\mathcal{H})$ is an arbitrary operator. Let the assumptions above hold. Then

$$
\begin{aligned}
g\left(|\langle\Phi(A) x, x\rangle|^{2}\right) & =g\left(\langle\Phi(B) x, x\rangle^{2}+\langle\Phi(C) x, x\rangle^{2}\right) \\
& \leq g\left(\left\langle\Phi(B)^{2} x, x\right\rangle+\langle\Phi(C) x, x\rangle^{2}\right) \\
& \leq g\left(\left\langle\Phi(B)^{2}+\Phi(C)^{2} x, x\right\rangle\right) \\
& \leq g\left(\left\langle\Phi\left(B^{2}\right)+\Phi\left(C^{2}\right) x, x\right\rangle\right) \\
& =g\left(\left\langle\Phi\left(B^{2}+C^{2}\right) x, x\right\rangle\right) \\
& =g\left(\left\langle\Phi\left(\frac{|A|^{2}+\left|A^{*}\right|^{2}}{2}\right) x, x\right\rangle\right) \\
& \leq\left\langle\Phi\left(g\left(\frac{|A|^{2}+\left|A^{*}\right|^{2}}{2}\right)\right) x, x\right\rangle
\end{aligned}
$$

where the first and the second inequality follows from the CauchySchwarz inequality and the third inequality obtained from the Kadison's
inequality [1, 2.3.2 Theorem]. So,

$$
\begin{aligned}
g\left(|\langle\Phi(A) x, x\rangle|^{2}\right) & \leq g\left(\left\langle\Phi(B)^{2} x, x\right\rangle+\langle\Phi(C) x, x\rangle^{2}\right) \\
& \leq\left\langle\Phi\left(g\left(\frac{|A|^{2}+\left|A^{*}\right|^{2}}{2}\right)\right) x, x\right\rangle
\end{aligned}
$$

On account of the assumption on f, we get

$$
\begin{aligned}
f(|\langle\Phi(A) x, x\rangle|) & \leq f\left(\left(\left\langle\Phi(B)^{2} x, x\right\rangle+\langle\Phi(C) x, x\rangle^{2}\right)^{\frac{1}{2}}\right) \\
& \leq\left\langle\Phi\left(f\left(\left(\frac{|A|^{2}+\left|A^{*}\right|^{2}}{2}\right)^{\frac{1}{2}}\right)\right) x, x\right\rangle .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
f(|\langle\Phi(A) x, x\rangle|) & \leq f\left(\left(\langle\Phi(B) x, x\rangle^{2}+\left\langle\Phi(C)^{2} x, x\right\rangle\right)^{\frac{1}{2}}\right) \\
& \leq\left\langle\Phi\left(f\left(\left(\frac{|A|^{2}+\left|A^{*}\right|^{2}}{2}\right)^{\frac{1}{2}}\right)\right) x, x\right\rangle
\end{aligned}
$$

In the current paper extensions of Jensen-type inequalities for the continuous function of self-adjoint operators on complex Hilbert spaces are given. We obtain some interesting inequalities which generalize the results in [7]. We emphasize that our method in this paper is entirely different from that appeared in [13] and [14].

2 Main Results

Let $A \in \mathcal{B}(\mathcal{H})$ be a self-adjoint operator with $\sigma(A) \subseteq[m, M]$, and let f be a convex function on $[m, M]$, then from [11], we have for any unit vector $x \in \mathcal{H}$,

$$
f(\langle A x, x\rangle) \leq\langle f(A) x, x\rangle .
$$

Replace A with $\Phi(A)$, where $\Phi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ is a unital positive linear map, we get

$$
\begin{equation*}
f(\langle\Phi(A) x, x\rangle) \leq\langle f(\Phi(A)) x, x\rangle \tag{3}
\end{equation*}
$$

for any unit vector $x \in \mathcal{K}$. Assume that A_{1}, \ldots, A_{n} are self-adjoint operators on \mathcal{H} with spectra in J and $\Phi_{1}, \ldots, \Phi_{n}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ are positive linear maps with $\sum_{i=1}^{n} \Phi_{i}\left(\mathbf{1}_{\mathcal{H}}\right)=\mathbf{1}_{\mathcal{K}}$. Now apply inequality (3) to the self-adjoint operator A on the Hilbert space $\mathcal{H} \oplus \cdots \oplus \mathcal{H}$ defined by $A=A_{1} \oplus \cdots \oplus A_{n}$ and the positive linear map Φ defined on $\mathcal{B}(\mathcal{H} \oplus \cdots \oplus \mathcal{H})$ by $\Phi(A)=\Phi_{1}\left(A_{1}\right) \oplus \cdots \oplus \Phi_{n}\left(A_{n}\right)$. Thus,

$$
\begin{equation*}
f\left(\left\langle\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle\right) \leq\left\langle f\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) x, x\right\rangle . \tag{4}
\end{equation*}
$$

More generalization is discussed as follows:
Lemma 2.1. Let $f: J \rightarrow \mathbb{R}$ be a convex and differentiable function on ${ }_{J}^{o}$ (the interior of J) whose derivative f^{\prime} is continuous on ${ }^{o} J$, let $A_{i} \in \mathcal{B}(\mathcal{H})$ self-adjoint operators with the spectra in $[m, M] \subset{ }_{J}^{o}$ for $(i=1, \ldots, n)$, and let $\Phi_{1}, \ldots, \Phi_{n}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ be positive linear mappings such that $\sum_{i=1}^{n} \Phi_{i}\left(\mathbf{1}_{\mathcal{H}}\right)=\mathbf{1}_{\mathcal{K}}$. Then for any unit vector $x \in \mathcal{K}$,

$$
\begin{aligned}
&\left\langle\sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right) x, x\right\rangle-f\left(\left\langle\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle\right) \\
& \leq\left\langle\sum_{i=1}^{n} \Phi_{i}\left(f^{\prime}\left(A_{i}\right) A_{i}\right) x, x\right\rangle \\
&-\left\langle\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle\left\langle\sum_{i=1}^{n} \Phi_{i}\left(f^{\prime}\left(A_{i}\right)\right) x, x\right\rangle .
\end{aligned}
$$

Proof. Since f is convex and differentiable on $\stackrel{o}{J}$, then we have for any $t, s \in[m, M]$,

$$
f^{\prime}(s)(t-s) \leq f(t)-f(s) \leq f^{\prime}(t)(t-s) .
$$

It is equivalent to

$$
\begin{equation*}
f^{\prime}(s) t-f^{\prime}(s) s \leq f(t)-f(s) \leq f^{\prime}(t) t-f^{\prime}(t) s . \tag{5}
\end{equation*}
$$

If we fix $s \in[m, M]$ and apply the continuous functional calculus for A_{i} $(i=1, \ldots, n)$, we get

$$
f^{\prime}(s) A_{i}-f^{\prime}(s) s \mathbf{1}_{\mathcal{H}} \leq f\left(A_{i}\right)-f(s) \mathbf{1}_{\mathcal{H}} \leq f^{\prime}\left(A_{i}\right) A_{i}-s f^{\prime}\left(A_{i}\right) .
$$

Applying the positive linear mappings Φ_{i} and summing on i from 1 to n, this implies

$$
\begin{aligned}
f^{\prime}(s) \sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)-f^{\prime}(s) s \mathbf{1}_{\mathcal{K}} & \leq \sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)-f(s) \mathbf{1}_{\mathcal{K}} \\
& \leq \sum_{i=1}^{n} \Phi_{i}\left(f^{\prime}\left(A_{i}\right) A_{i}\right)-s \sum_{i=1}^{n} \Phi_{i}\left(f^{\prime}\left(A_{i}\right)\right) .
\end{aligned}
$$

Therefore, for any unit vector $x \in \mathcal{K}$, we have

$$
\begin{aligned}
& f^{\prime}(s)\left\langle\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle-f^{\prime}(s) s \\
& \leq\left\langle\sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right) x, x\right\rangle-f(s) \\
& \leq\left\langle\sum_{i=1}^{n} \Phi_{i}\left(f^{\prime}\left(A_{i}\right) A_{i}\right) x, x\right\rangle-s\left\langle\sum_{i=1}^{n} \Phi_{i}\left(f^{\prime}\left(A_{i}\right)\right) x, x\right\rangle .
\end{aligned}
$$

Since $\sum_{i=1}^{n} \Phi_{i}\left(\mathbf{1}_{\mathcal{H}}\right)=\mathbf{1}_{\mathcal{K}}$ and $\sigma\left(A_{i}\right) \subseteq[m, M]$, then $\sigma\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) \subseteq$ $[m, M]$. Thus, by substituting $s=\left\langle\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle$, we deduce the desired result.

We now have all the tools needed to write the proof of the first theorem.

Theorem 2.2. Let all the assumptions of Lemma 2.1 hold. Then

$$
\sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right) \leq f\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right)+\delta \mathbf{1}_{\mathcal{K}}
$$

where

$$
\begin{aligned}
\delta= & \sup _{\substack{x \in \mathcal{K} \\
\|x\|=1}}\left\{\left\langle\sum_{i=1}^{n} \Phi_{i}\left(f^{\prime}\left(A_{i}\right) A_{i}\right) x, x\right\rangle-\left\langle\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle\right. \\
& \left.\times\left\langle\sum_{i=1}^{n} \Phi_{i}\left(f^{\prime}\left(A_{i}\right)\right) x, x\right\rangle\right\} .
\end{aligned}
$$

Proof. It follows from the assumptions that

$$
\begin{aligned}
0 \leq & \left\langle\sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right) x, x\right\rangle-f\left(\left\langle\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle\right) \\
\leq & \left\langle\sum_{i=1}^{n} \Phi_{i}\left(f^{\prime}\left(A_{i}\right) A_{i}\right) x, x\right\rangle \\
& -\left\langle\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle\left\langle\sum_{i=1}^{n} \Phi_{i}\left(f^{\prime}\left(A_{i}\right)\right) x, x\right\rangle \\
\leq & \sup _{x \in \mathcal{K}}\left\{\left\langle\sum_{i=1}^{n} \Phi_{i}\left(f^{\prime}\left(A_{i}\right) A_{i}\right) x, x\right\rangle-\left\langle\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle\right. \\
& \left.\times\left\langle\sum_{i=1}^{n} \Phi_{i}\left(f^{\prime}\left(A_{i}\right)\right) x, x\right\rangle\right\} \\
= & \delta,
\end{aligned}
$$

thanks to Lemma 2.1. Therefore,

$$
\left\langle\sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right) x, x\right\rangle \leq f\left(\left\langle\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle\right)+\delta
$$

for any unit vector $x \in \mathcal{K}$.

Now we can write,

$$
\begin{aligned}
\left\langle\sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right) x, x\right\rangle & \leq f\left(\left\langle\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle\right)+\delta \\
& \leq\left\langle f\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) x, x\right\rangle+\delta \quad(\text { by }(4)) \\
= & \left\langle f\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) x, x\right\rangle+\delta\langle x, x\rangle \\
& (\text { since }\|x\|=1) \\
= & \left\langle f\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) x, x\right\rangle+\left\langle\delta \mathbf{1}_{\mathcal{K}} x, x\right\rangle \\
= & \left\langle f\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right)+\delta \mathbf{1}_{\mathcal{K}} x, x\right\rangle
\end{aligned}
$$

for any unit vector $x \in \mathcal{K}$.
By replacing x by $\frac{y}{\|y\|}$ where y is any vector in \mathcal{K}, we deduce the desired inequality.

A kind of a converse of Theorem 2.2 can be considered as follows.
Theorem 2.3. Let all the assumptions of Lemma 2.1 hold with the additional condition that f is increasing. Then

$$
f\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) \leq \sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)+\zeta \mathbf{1}_{\mathcal{K}}
$$

where

$$
\begin{aligned}
\zeta= & \sup _{\substack{x \in \mathcal{K} \\
\|x\|=1}}\left\{\left\langle f^{\prime}\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) \sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle-\left\langle\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle\right. \\
& \left.\times\left\langle f^{\prime}\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) x, x\right\rangle\right\} .
\end{aligned}
$$

Proof. Fix $t \in[m, M]$. Since $[m, M]$ contains the spectra of the A_{i} for $i=1, \ldots, n$ and $\sum_{i=1}^{n} \Phi_{i}\left(\mathbf{1}_{\mathcal{H}}\right)=\mathbf{1}_{\mathcal{K}}$, so the spectra of $\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)$ is
also contained in $[m, M]$. Then we may replace s in the inequality (5) by $\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)$, via a functional calculus to get

$$
\begin{aligned}
f\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right)-f(t) \mathbf{1}_{\mathcal{K}} \leq & f^{\prime}\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) \sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) \\
& -t f^{\prime}\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right)
\end{aligned}
$$

This inequality implies, for any $x \in \mathcal{K}$ with $\|x\|=1$,

$$
\begin{align*}
& \left\langle f\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) x, x\right\rangle-f(t) \\
& \leq\left\langle f^{\prime}\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) \sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle-t\left\langle f^{\prime}\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) x, x\right\rangle . \tag{6}
\end{align*}
$$

Substituting t with $\left\langle\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle$ in (6). Thus,

$$
\begin{aligned}
0 \leq & \left\langle f\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) x, x\right\rangle-f\left(\left\langle\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle\right)(\text { by }(4)) \\
\leq & \left\langle f^{\prime}\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) \sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle \\
& -\left\langle\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle\left\langle f^{\prime}\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) x, x\right\rangle \\
\leq & \sup _{x \in \mathcal{K}}\left\{\left\langle f^{\prime}\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) \sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle\right. \\
& \left.-\left\langle\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle\left\langle f^{\prime}\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) x, x\right\rangle\right\} \\
= & \zeta
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \left\langle f\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) x, x\right\rangle \\
& \leq f\left(\left\langle\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle\right)+\zeta \\
& \leq\left\langle\sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right) x, x\right\rangle+\zeta \quad(\text { by }(2))
\end{aligned}
$$

for any unit vector $x \in \mathcal{K}$, and the proof is complete.

3 Some Applications

In this section, we collect some consequences of Theorems 2.2 and 2.3. (I) By setting $f(t)=t^{p}(p \geq 1)$ in Theorems 2.2 and 2.3 we find that:

$$
\begin{equation*}
\sum_{i=1}^{n} \Phi_{i}\left(A_{i}^{p}\right) \leq\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right)^{p}+p \delta \mathbf{1}_{\mathcal{K}} \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
\delta= & \sup _{\substack{x \in \mathcal{K} \\
\|x\|=1}}\left\{\left\langle\sum_{i=1}^{n} \Phi_{i}\left(A_{i}^{p}\right) x, x\right\rangle-\left\langle\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle\right. \\
& \left.\times\left\langle\sum_{i=1}^{n} \Phi_{i}\left(A_{i}^{p-1}\right) x, x\right\rangle\right\}
\end{aligned}
$$

and

$$
\begin{equation*}
\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right)^{p} \leq \sum_{i=1}^{n} \Phi_{i}\left(A_{i}^{p}\right)+p \zeta \mathbf{1}_{\mathcal{K}} \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
\zeta & =\sup _{\substack{x \in \mathcal{K} \\
\|x\|=1}}\left\{\left\langle\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right)^{p} x, x\right\rangle-\left\langle\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) x, x\right\rangle\right. \\
& \left.\times\left\langle\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right)^{p-1} x, x\right\rangle\right\}
\end{aligned}
$$

whenever $A_{1}, \ldots, A_{n} \in \mathcal{B}(\mathcal{H})$ are positive operators and $\Phi_{1}, \ldots, \Phi_{n}$: $\mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ positive linear mappings such that $\sum_{i=1}^{n} \Phi_{i}\left(\mathbf{1}_{\mathcal{H}}\right)=\mathbf{1}_{\mathcal{K}}$. If the operators A_{1}, \ldots, A_{n} are strictly positive, then (7) and (8) are also true for $p<0$.
(II) Assume that w_{1}, \ldots, w_{n} are positive scalars such that $\sum_{i=1}^{n} w_{i}=1$. If we apply Theorems 2.2 and 2.3 for positive linear mappings Φ_{i} : $\mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ determined by $\Phi_{i}: T \mapsto w_{i} T(i=1, \ldots, n)$, we get

$$
\sum_{i=1}^{n} w_{i} f\left(A_{i}\right) \leq f\left(\sum_{i=1}^{n} w_{i} A_{i}\right)+\delta \mathbf{1}_{\mathcal{H}}
$$

where

$$
\begin{aligned}
\delta= & \sup _{\substack{x \in \mathcal{H} \\
\|x\|=1}}\left\{\left\langle\sum_{i=1}^{n} w_{i} f^{\prime}\left(A_{i}\right) A_{i} x, x\right\rangle-\left\langle\sum_{i=1}^{n} w_{i} A_{i} x, x\right\rangle\right. \\
& \left.\times\left\langle\sum_{i=1}^{n} w_{i} f^{\prime}\left(A_{i}\right) x, x\right\rangle\right\},
\end{aligned}
$$

and

$$
f\left(\sum_{i=1}^{n} w_{i} A_{i}\right) \leq \sum_{i=1}^{n} w_{i} f\left(A_{i}\right)+\zeta \mathbf{1}_{\mathcal{H}}
$$

where

$$
\begin{aligned}
\zeta= & \sup _{\substack{x \in \mathcal{H} \\
\|x\|=1}}\left\{\left\langle f^{\prime}\left(\sum_{i=1}^{n} w_{i} A_{i}\right) \sum_{i=1}^{n} w_{i} A_{i} x, x\right\rangle-\left\langle\sum_{i=1}^{n} w_{i} A_{i} x, x\right\rangle\right. \\
& \left.\times\left\langle f^{\prime}\left(\sum_{i=1}^{n} w_{i} A_{i}\right) x, x\right\rangle\right\} .
\end{aligned}
$$

Choi's inequality [2, Proposition 4.3] says that

$$
\begin{equation*}
\Phi(B) \Phi(A)^{-1} \Phi(B) \leq \Phi\left(B A^{-1} B\right) \tag{9}
\end{equation*}
$$

whenever B is self-adjoint and A is positive invertible. We shall show the following complementary inequality of (9):

Proposition 3.1. Let $A, B \in \mathcal{B}(\mathcal{H})$ such that B is self-adjoint and A is positive invertible, and let $\Phi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ be a unital positive linear mapping. Then

$$
\begin{equation*}
\Phi\left(B A^{-1} B\right) \leq \Phi(B) \Phi(A)^{-1} \Phi(B)+2 \delta \Phi(A) \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
\delta= & \sup _{\substack{x \in \mathcal{K} \\
\|x\|=1}}\left\{\left\langle\Phi(A)^{-\frac{1}{2}} \Phi\left(B A^{-1} B\right) \Phi(A)^{-\frac{1}{2}} x, x\right\rangle\right. \\
& \left.-\left\langle\Phi(A)^{-\frac{1}{2}} \Phi(B) \Phi(A)^{-\frac{1}{2}} x, x\right\rangle^{2}\right\} .
\end{aligned}
$$

Proof. It follows from Theorem 2.2 that

$$
\begin{equation*}
\Psi\left(T^{2}\right) \leq \Psi(T)^{2}+2 \delta \mathbf{1}_{\mathcal{K}} \tag{11}
\end{equation*}
$$

where

$$
\delta=\sup \left\{\left\langle\Psi\left(T^{2}\right) x, x\right\rangle-\langle\Psi(T) x, x\rangle^{2}: x \in \mathcal{K} ;\|x\|=1\right\} .
$$

To a fixed positive $A \in \mathcal{B}(\mathcal{H})$ we set

$$
\Psi(X)=\Phi(A)^{-\frac{1}{2}} \Phi\left(A^{\frac{1}{2}} X A^{\frac{1}{2}}\right) \Phi(A)^{-\frac{1}{2}}
$$

and notice that $\Psi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ is a unital linear map. Now, if $T=A^{-\frac{1}{2}} B A^{-\frac{1}{2}}$, we infer from (11) that

$$
\begin{aligned}
\Phi(A)^{-\frac{1}{2}} \Phi\left(B A^{-1} B\right) \Phi(A)^{-\frac{1}{2}} \leq & \Phi(A)^{-\frac{1}{2}} \Phi(B) \Phi(A)^{-1} \Phi(B) \Phi(A)^{-\frac{1}{2}} \\
& +2 \delta \mathbf{1}_{\mathcal{K}}
\end{aligned}
$$

where

$$
\begin{aligned}
\delta= & \sup _{\substack{x \in \mathcal{K} \\
\|x\|=1}}\left\{\left\langle\Phi(A)^{-\frac{1}{2}} \Phi\left(B A^{-1} B\right) \Phi(A)^{-\frac{1}{2}} x, x\right\rangle\right. \\
& \left.-\left\langle\Phi(A)^{-\frac{1}{2}} \Phi(B) \Phi(A)^{-\frac{1}{2}} x, x\right\rangle^{2}\right\} .
\end{aligned}
$$

By multiplying from the left and from the right with $\Phi(A)^{\frac{1}{2}}$ we obtain (10).

The parallel sum of two positive operators A, B is defined as the operator

$$
A: B=\left(A^{-1}+B^{-1}\right)^{-1}
$$

A simple calculation shows that (see, e.g., [1, (4.6) and (4.7)])

$$
\begin{equation*}
A: B=A-A(A+B)^{-1} A=B-B(A+B)^{-1} B . \tag{12}
\end{equation*}
$$

If Φ is any positive linear map, then (see [1, Theorem 4.1.5])

$$
\begin{equation*}
\Phi(A: B) \leq \Phi(A): \Phi(B) . \tag{13}
\end{equation*}
$$

The following result gives a reverse of inequality (13).
Proposition 3.2. Let $A, B \in \mathcal{B}(\mathcal{H})$ positive invertible operators and let $\Phi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ be unital positive linear mapping. Then

$$
\Phi(A): \Phi(B) \leq \Phi(A: B)+2 \delta \Phi(A+B)
$$

where

$$
\begin{aligned}
\delta= & \sup \left\{\left\langle\Phi(A+B)^{-\frac{1}{2}} \Phi\left(A(A+B)^{-1} A\right) \Phi(A+B)^{-\frac{1}{2}} x, x\right\rangle\right. \\
& \left.-\left\langle\Phi(A+B)^{-\frac{1}{2}} \Phi(A) \Phi(A+B)^{-\frac{1}{2}} x, x\right\rangle^{2}: x \in \mathcal{K} ;\|x\|=1\right\} .
\end{aligned}
$$

Proof. Proposition 3.1 easily implies

$$
\begin{equation*}
\Phi\left(A(A+B)^{-1} A\right) \leq \Phi(A) \Phi(A+B)^{-1} \Phi(A)+2 \delta \Phi(A+B) \tag{14}
\end{equation*}
$$

where

$$
\begin{aligned}
\delta= & \sup \left\{\left\langle\Phi(A+B)^{-\frac{1}{2}} \Phi\left(A(A+B)^{-1} A\right) \Phi(A+B)^{-\frac{1}{2}} x, x\right\rangle\right. \\
& \left.-\left\langle\Phi(A+B)^{-\frac{1}{2}} \Phi(A) \Phi(A+B)^{-\frac{1}{2}} x, x\right\rangle^{2}: x \in \mathcal{K} ;\|x\|=1\right\} .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\Phi(A): \Phi(B) & =\Phi(A)-\Phi(A)(\Phi(A)+\Phi(B))^{-1} \Phi(A) \quad(\text { by }(12)) \\
& =\Phi(A)-\Phi(A) \Phi(A+B)^{-1} \Phi(A)
\end{aligned}
$$

(by the linearity of Φ)

$$
\leq \Phi(A)-\Phi\left(A(A+B)^{-1} A\right)+2 \delta \Phi(A+B)
$$

(by (14))

$$
=\Phi\left(A-A(A+B)^{-1} A\right)+2 \delta \Phi(A+B)
$$

(by the linearity of Φ) $=\Phi(A: B)+2 \delta \Phi(A+B)$.

Hence the conclusions follow.

References

[1] R. Bhatia, Positive definite matrices, Princeton Series in Applied Mathematics, Princeton, 2007.
[2] M. D. Choi, Some assorted inequalities for positive linear maps on C^{*}-algebras, J. Operator Theory., 4 (1980), 271-285.
[3] S. S. Dragomir, Private communications.
[4] S. Furuichi, H. R. Moradi and A. Zardadi, Some new Karamata type inequalities and their applications to some entropies, Rep. Math. Phys., 84(2) (2019), 201-214.
[5] F. Hansen, J. Pečarić and I. Perić, Jensen's operator inequality and it's converses, Math. Scand., 100 (2007), 61-73.
[6] L. Horváth, K. A. Khan and J. Pečarić, Cyclic refinements of the different versions of operator Jensen's inequality, Electron. J. Linear Algebra., 31(1) (2016), 125-133.
[7] E. Jaafari, M. S. Asgari, M. Shah Hosseini and B. Moosavi, On the Jensen's inequality and its variants, AIMS Mathematics., 5(2) (2020), 1177-1185.
[8] J. Mićić, H. R. Moradi and S. Furuichi, Choi-Davis-Jensen's inequality without convexity, J. Math. Inequal., 12(4) (2018), 10751085.
[9] J. Mićić, H. R. Moradi and S. Furuichi, Some complementary inequalities to Jensen's operator inequality, J. Inequal. Appl., 2018, no. 1 (2018): 25.
[10] J. Mićić and J. Pečarić, Some mappings related to Levinson's inequality for Hilbert space operators, Filomat., 31 (2017), 1995-2009.
[11] B. Mond and J. Pečarić, On Jensen's inequality for operator convex functions, Houston J. Math., 21 (1995), 739-753.
[12] B. Moosavi, H. R. Moradi and M. Shah Hosseini, Further results on Jensen-type inequalities, Probl. Anal. Issues Anal., 8(3) (2019), 112-124.
[13] H. R. Moradi, S. Furuichi, F. C. Mitroi and R. Naseri, An extension of Jensen's operator inequality and its application to Young inequality, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat, $113(2)(2019), 605-614$.
[14] J. Mićić, Z. Pavić and J. J. Pečarić, Jensen's inequality for operators without operator convexity, Linear Algebra Appl., 434(5) (2011), 1228-1237.

Mohsen Shah Hosseini

Assistant Professor of Mathematics
Department of Mathematics
Shahr-e-Qods Branch, Islamic Azad University
Tehran, Iran
E-mail: mohsen_shahhosseini@yahoo.com

Hamid Reza Moradi

Graduated PhD. of Mathematics
Young Researchers and Elite Club
Mashhad Branch, Islamic Azad University
Mashhad, Iran

E-mail: hrmoradi@mshdiau.ac.ir

Baharak Moosavi

Assistant Professor of Mathematics
Department of Mathematics
Safadasht Branch, Islamic Azad University
Tehran, Iran
E-mail: baharak_moosavie@yahoo.com

[^0]: Received: June 2019; Accepted: February 2020

 * Corresponding Author

