On Linear Operators that Preserve $B J$-Orthogonality in $2-$ Normed Spaces

M. Iranmanesh
Shahroud University of Technology
A. Ganjbakhsh Sanatee*
Quchan University of Technology

Abstract

Let X be a real 2 -Banach space. We follow Gunawan, Mashadi, Gemawati, Nursupiamin and Siwaningrum in saying that x is orthogonal to y if there exists a subspace V of X with $\operatorname{codim}(V)=1$ such that $\|x+\lambda y, z\| \geqslant\|x, z\|$ for every $z \in V$ and $\lambda \in \mathbb{R}$. In this paper, we prove that every linear mapping $T: X \longrightarrow X$ which preserve orthogonality is a 2 -isometry multiplied by a constant.

AMS Subject Classification: 46B20; 46B04; 46C50
Keywords and Phrases: 2-Normed space, Birkhoff-James orthogonality, 2-Banach space, 2-isometry

1. Introduction

In a real normed linear space $(X,\|\|$.$) , there are many defnitions of$ orthogonality between two elements $x, y \in X$. Sikorska [18], studied the properties of some orthogonalities and compared them together. The most usefull version of orthogonality in a normed space $(X,\|\|$.$) ,$ commonly used by mathematicians, is the Birkhof-James orthogonality which says that x is orthogonal to y in X (and in this case we write

[^0]not symmetric in general, but it happens when the norm comes from an inner product.

The concept of linear $2-$ normed spaces has been initially investigated by S. Gahler [7] and have been developed extensively by Y. J. Cho, C. Diminnie, R. Freese, S. Gahler, A.White and many other mathematicians, see, e.g. $[4,5,6]$. Let X be a linear space of dimension greater than 1 and let $\|\cdot, \cdot\|$ be a real-valued function on $X \times X$ satisfying the following conditions for all $x, y, z \in X$ and $\lambda \in \mathbb{R}$
(1) $\|x, y\|=0$ if and only if x and y are linearly dependent.
(2) $\|x, y\|=\|y, x\|$;
(3) $\|x, \lambda y\|=|\lambda|\|x, y\|=\|\lambda x, y\|$;
(4) $\|x+y, z\| \leqslant\|x, z\|+\|y, z\|$.

Then $\|\cdot, \cdot\|$ is called a $2-$ norm on X and the pair $(X,\|\cdot, \cdot\|)$ is a $2-$ norm space.

A sequence $\left(x_{n}\right)$ in $2-$ normed space $(X,\|\cdot, \cdot\|)$ is said to be convergent to x if the 2 -norm $\left\|x_{n}-x, y\right\|_{n \in \mathbb{N}}$ tends to zero for all $y \in X$. In this case, we write $\lim _{n \rightarrow \infty} x_{n}=x$ and we call x the limit of $\left(x_{n}\right) .\left(x_{n}\right)$ is called a Cauchy sequence if there exist linearly independent elements y and z in X such that $\left(\left\|x_{n}, y\right\|\right)$ and $\left(\left\|x_{n}, z\right\|\right)$ are real Cauchy sequences. If every Cauchy sequence converges to some $x \in X$, then $(X,\|\cdot, \cdot\|)$ is called a 2 -Banach space.

Various notions in normed spaces have been extended to 2 -normed spaces by many mathematicians. For more details, see, e.g. [5, 13, 14, $15,16,17]$. khan and Siddiqui [10], defined another expression of the Birkhoff-James orthogonality on an arbitrary 2 -normed space ($X,\|.,$.$\|)$ asserting that x is orthogonal to y (and denoted by $x \underset{B J}{\perp} y$) if $\| x+$ $\lambda y, z\|\geqslant\| x, z \|$ for every $z \neq 0$ and $\lambda \in \mathbb{R}$. However, Gunawan, Mashadi, Gemawati, Nursupiamin and Siwaningrum [8] remarked that there are no such elements satisfying orthogonality in this sense and restricted the relation $\|x+\lambda y, z\| \geqslant\|x, z\|$ to a subspace V of codimention 1. Actually,
$x \underset{B J}{\perp} y$ if and only if there exists a subspace V of X with $\operatorname{codim}(V)=1$ such that $\|x+\lambda y, z\| \geqslant\|x, z\| \quad$ for every $z \in V$ and $\lambda \in \mathbb{R}$.
In 1984, A. White and Y. J. Cho gave a chractrization for continuity of linear self mapping in $2-$ normed spaces [21]. In 1992, Koldabsky [12] proved that a linear self mapping T on a real normed space X preserves orthogonality if and only if T is an isometry multiplied by a positive constant and then in 2006 Blanco and Turnsek [3] extend this result to the case of linear operator between two different coplex normed linear spaces. In this paper, we prove the Koldabsky theorem for 2 -normed spaces.

2. Main Results

Definition 2.1. Let X and Y be two linear 2 -normed spaces. Then the map $T: X \longrightarrow Y$ is said to be a $2-$ isometry if

$$
\left\|x_{1}, x_{2}\right\|=\left\|T\left(x_{1}\right), T\left(x_{2}\right)\right\|
$$

for all $x_{1}, x_{2} \in X$.
Throughout this paper, X denotes a $2-$ Banach space and X^{*} is its dual.
Let x_{0} and $z_{0} \in X$ and $x_{0} \neq 0, z_{0} \neq 0$. We define $S^{z_{0}}\left(x_{0}\right)$ as follows

$$
S^{z_{0}}\left(x_{0}\right)=\left\{x^{*} \in X^{*} ; \sup _{x \in X,\left\|x, z_{0}\right\|=1} x^{*}(x)=1, x^{*}\left(x_{0}\right)=\left\|x_{0}, z_{0}\right\|\right\}
$$

Definition 2.2. [22] Let $f: X \rightarrow \mathbb{R}$ be a function, $x_{0} \in X, x_{0}^{*} \in X^{*}$, then we say that x_{0} is a subgradient of f at x if

$$
f(y)-f(x) \geqslant x_{0}^{*}\left(y-x_{0}\right) \quad y \in Y
$$

The subdifferential of f at x_{0} is the set of all subgradients of f at x_{0} and is denoted by $\partial f\left(x_{0}\right)$.

Theorem 2.3. [2, Theorem 2.39] Let $f: X \rightarrow \mathbb{R}$ be a proper convex function. If f is finite and continuous at x_{0}, then

$$
\lim _{\lambda \rightarrow 0^{+}} \frac{f\left(x_{0}+\lambda y\right)-f\left(x_{0}\right)}{\lambda}=\sup \left\{x^{*}(y) \mid x^{*} \in \partial f\left(x_{0}\right)\right\}
$$

By [22, Theorem 2.4.14, part (iii)] we have:

$$
\begin{equation*}
\partial f\left(x_{0}\right)=\left\{x^{*} \in \partial f(0) \mid x^{*}\left(x_{0}\right)=f\left(x_{0}\right)\right\} \tag{1}
\end{equation*}
$$

Let $f: X \rightarrow \mathbb{R}, f(x):=\left\|x, z_{0}\right\|$ and $z_{0} \in X$. Then by Definition 2.2 and (1) we have

$$
\begin{aligned}
\partial f\left(x_{0}\right) & =\left\{x^{*} \in X^{*} ; x^{*}(x) \leqslant\left\|x, z_{0}\right\|, x^{*}\left(x_{0}\right)=\left\|x_{0}, z_{0}\right\|\right\} \\
& =\left\{x^{*} \in X^{*} ; \sup _{x \in X},\left\|x, z_{0}\right\|=1\right. \\
& \left.x^{*}(x)=1, x^{*}\left(x_{0}\right)=\left\|x_{0}, z_{0}\right\|\right\} \\
& =S^{z_{0}}\left(x_{0}\right)
\end{aligned}
$$

Thus, by Theorem 2.3, we have

$$
\begin{align*}
& \lim _{\lambda \rightarrow 0^{+}} \frac{\|x+\lambda y, z\|-\|x, z\|}{\lambda}=\sup _{x^{*} \in S^{z}(x)} x^{*}(x) \tag{2}\\
& \lim _{\lambda \rightarrow 0^{-}} \frac{\|x+\lambda y, z\|-\|x, z\|}{\lambda}=\inf _{x^{*} \in S^{z}(x)} x^{*}(x) . \tag{3}
\end{align*}
$$

for every $x, y \in X, x \neq 0$.
Let $D^{z}(x, y)$ be the set of all real numbers λ at which the function $\phi^{z}(\lambda)=\|x+\lambda y, z\|$ is differentiable.

Lemma 2.4. The function $\phi^{z}(\lambda)$ is differentiable if and only if the value of $x^{*}(y)$ is independent of choice of $x^{*} \in S^{z}(x+\lambda y)$.

Proof. ϕ^{z} is differentiable if and only if

$$
\lim _{h \rightarrow 0^{+}} \frac{\|x+\lambda y+h y, z\|-\|x+\lambda y, z\|}{h}=\lim _{h \rightarrow 0^{-}} \frac{\|x+\lambda y+h y, z\|-\|x+\lambda y, z\|}{h}
$$

if and only if

$$
\sup _{x^{*} \in S^{z}(x+\lambda y)} x^{*}(y)=\inf _{x^{*} \in S^{z}(x+\lambda y)} x^{*}(y) .
$$

Now, suppose that there exists x_{1}^{*} and $x_{2}^{*} \in X^{*}$ such that $x_{1}^{*}(y) \neq$ $x_{2}^{*}(y)$. Let $x_{1}^{*}(y)<x_{2}^{*}(y)$, we have

$$
\inf _{x^{*} \in S^{z}(x+\lambda y)} x^{*}(y) \leqslant x_{1}^{*}(y)<x_{2}^{*}(y) \leqslant \sup _{x^{*} \in S^{z}(x+\lambda y)} x^{*}(y)
$$

therefore

$$
\sup _{x^{*} \in S^{z}(x+\lambda y)} x^{*}(y) \neq \inf _{x^{*} \in S^{z}(x+\lambda y)} x^{*}(y)
$$

this is a contradiction. Hence

$$
x_{1}^{*}(y)=x_{2}^{*}(y) \quad \text { for all } x_{1}^{*}, x_{2}^{*} \in S^{z}(x+\lambda y)
$$

Lemma 2.5. [19] Every convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable almost everywhere on \mathbb{R} respect to Lebesgue measure.
Let λ_{1} and $\lambda_{2} \in \mathbb{R}$. Then for every $t \in[0,1]$, we have

$$
\begin{aligned}
\phi^{z}\left(t \lambda_{1}+(1-t) \lambda_{2}\right) & =\left\|x+\left(t \lambda_{1}+(1-t) \lambda_{2}\right) y, z\right\| \\
& =\left\|t x+t \lambda_{1} y, z\right\|+\left\|(1-t) x+(1-t) \lambda_{1} y, z\right\| \\
& \leqslant t\left\|x+\lambda_{1} y, z\right\|+(1-t)\left\|x+\lambda_{1} y, z\right\| \\
& \leqslant t \phi^{z}\left(\lambda_{1}\right)+(1-t) \phi^{z}\left(\lambda_{2}\right)
\end{aligned}
$$

So by Lemma 2.5, ϕ^{z} is differentiable almost everywhere on \mathbb{R} with respect to Lebesgue measure.

Lemma 2.6. Let $\lambda \in D^{z}(x, y)$ and $a, b \in \mathbb{R}$. Then
(1) The value of $x^{*}(a x+b y)$ is independent of the choice of $x^{*} \in$ $S^{z}(x+\lambda y)$.
(2) $x+\lambda y \underset{B J}{\perp}$ ax $+b y$ if and only if $S^{z}(a x+b y)=0$ for every $x^{*} \in$ $S^{z}(x+\lambda y)$.

Proof.

(1). Let $x^{*} \in S^{z}(x+\lambda y)$. By Lemma 2.4, $x^{*}(y)$ is independent of the choice x^{*}. Furthermore,

$$
\begin{equation*}
x^{*}(x)=x^{*}(x+\lambda y)-\lambda x^{*}(y)=\|x-\lambda y, z\|-\lambda x^{*}(y) \tag{4}
\end{equation*}
$$

for every $x^{*} \in S^{z}(x+\lambda y)$. By the independence of $x^{*}(y)$ and equation 4 , the result holds.
(2). If $x+\lambda y \underset{B J}{\perp} a x+b y$ then there exists subspace V with $\operatorname{codim}(V)=$ 1 such that

$$
\|x+\lambda y+t(a x+b y), z\| \geqslant\|x+\lambda y, z\| \quad \text { for all } t \in \mathbb{R} \text { and } z \in V
$$

Therefore,

$$
\begin{aligned}
& \lim _{t \rightarrow 0^{+}} \frac{\|x+\lambda y+t(a x+b y), z\|-\|x+\lambda y, z\|}{t} \geqslant 0 \\
& \lim _{t \rightarrow 0^{-}} \frac{\|x+\lambda y+t(a x+b y), z\|-\|x+\lambda y, z\|}{t} \leqslant 0
\end{aligned}
$$

Hence

$$
\begin{equation*}
\inf _{x^{*} \in S^{z}(x+\lambda y)} x^{*}(a x+b y) \leqslant 0 \leqslant \sup _{x^{*} \in S^{z}(x+\lambda y)} x^{*}(a x+b y) \tag{5}
\end{equation*}
$$

The fact that the value of $x^{*}(a x+b y)$ is independent of the choice of x^{*}, makes the inequlity 5 into equlity. Therefore

$$
x^{*}(a x+b y)=0 \quad \text { for all } x^{*} \in S^{z}(x+\lambda y)
$$

Conversely, if $x^{*}(a x+b y)=0 \quad$ for any $x^{*} \in S^{z}(x+\lambda y)$ then $x^{*}(x+\lambda y+\gamma(a x+b y))=x^{*}(x+\lambda y)=\|x+\lambda y, z\| \quad$ for every $\gamma \in \mathbb{R}$.

Since $\quad x^{*}(x)=1$, we have
$1=\sup _{w \in \mathbf{X}} x^{*}\left(\frac{w}{\|w, z\|}\right) \geqslant x^{*}\left(\frac{x+\lambda y+\gamma(a x+b y)}{\|x+\lambda y+\gamma(a x+b y), z\|}\right)=\frac{\|x+\lambda y, z\|}{\|x+\lambda y+\gamma(a x+b y), z\|}$
which means

$$
x+\lambda y \underset{B J}{\perp} a x+b y .
$$

Remark 2.7. Let $x+a y \underset{B J}{\perp} y$. There exists a subspace V of X with $\operatorname{codim}(V)=1$ such that

$$
\|(x+a y)+\lambda y, z\| \geqslant\|x+a y, z\| \quad \text { for every } z \in V, \lambda \in \mathbb{R} .
$$

We choose an element $z \in V$ and fix it. we have;
$\|(x+a y)+\lambda y, z\| \geqslant\|x+a y, z\|$ for every $\lambda \in \mathbb{R}$ if and only if $\|x+a y, z\|$ is the smallest value of $\|x+\lambda y, z\|$. Since $\|x+\lambda y, z\|$ is continuous at λ, it most take its minimum. Suppose $x+m y \underset{B J}{\frac{1}{B J}} x$ and $x+M y \underset{B J}{\underset{B J}{ } x \text {. since }}$ the function ϕ is convex, it follows that $\|x+m y, z\|=\|x+M y, z\|=$ $\|x+a y, z\|$ if a is between m and M and that $x+a y \frac{\perp}{B J} y$. So, the set of numbers a for which $\|(x+a y)+\lambda y, z\| \geqslant\|x+a y, z\|$ is closed interval $[m, M]$ and $\|x+a y, z\|=\|x+m y, z\|=\|x+M y, z\|$ for any $a \in[m, M]$.

Lemma 2.8. For each $a \in D^{z}(x, y)$, we have either $\|(x+a y)+\lambda y, z\| \geqslant$ $\| x+$ ay, $z \|$ for any $\lambda \in \mathbb{R}$ or there exists a unique number $k_{a} \in \mathbb{R}$ such that $\left\|(x+a y)+\lambda\left(x-k_{a} y\right), z\right\| \geqslant \| x+$ ay, $z \|$ for every $\lambda \in \mathbb{R}$.
Proof. Let $a \in D^{z}(x, y)$ and $x^{*} \in S^{z}(x+a y)$. Using Lemma 2.4 and 2.6 the value of the $x^{*}(x)$ and $x^{*}(y)$ are not depend to the choice of $x^{*} \in S^{z}(x+a y)$. If $x^{*}(y)=0$, then by Lemma ??, $\|(x+a y)+\lambda y, z\| \geqslant$ $\|x+a y, z\|$. If $x^{*}(y) \neq 0$, then $\|(x+a y)+\lambda(x-b y), z\| \geqslant\|x+a y, z\|$ if and only if $x^{*}(x-b y)=0$. Thus, $k_{a}=\frac{x^{*}(x)}{x^{*}(y)}$.
Lemma 2.8, define the function f on $\mathbb{R} \backslash[m, M]$ by $f(a)=k_{a}$. It appeares that the 2 -norm can be expressed in terms of the function f.

Lemma 2.9. Consider m and M as we mentioned in Remark 2.7. Let $\lambda \in D^{z}(x, y)$. If $\lambda \in(m, M)$ then

$$
\begin{align*}
& \|x+\lambda y, z\|=\|x+M y, z\| \exp \left(\int_{M}^{\lambda}(t+f(t))^{-1} d t\right) \tag{6}\\
& \|x+\lambda y, z\|=\|x+m y, z\| \exp \left(\int_{\lambda}^{m}(t+f(t))^{-1} d t\right) \tag{7}
\end{align*}
$$

Proof. Let $\lambda \in D^{z}(x, y), \lambda>M$. Fix $x^{*} \in S^{z}(x+\lambda y)$. By Lemma 2.8,

$$
\begin{equation*}
x^{*}(x)=f(\lambda) x^{*}(y) \tag{8}
\end{equation*}
$$

From Equations (2),(3) and Lemma 2.4, we have

$$
x^{*}(x)=\frac{d(\|x+\lambda y, z\|)}{d \lambda} .
$$

So

$$
\begin{equation*}
x^{*}(x)=x^{*}(x+\lambda y)-\lambda x^{*}(y)=\|x+\lambda y, z\|-\lambda \frac{d(\|x+\lambda y, z\|)}{d \lambda} \tag{9}
\end{equation*}
$$

Hence, $f(\lambda) x^{*}(y)=\|x+\lambda y, z\|-\lambda \frac{d(\|x+\lambda y, z\|)}{d \lambda}$ which implies that

$$
f(\lambda) \frac{d(\|x+\lambda y, z\|)}{d \lambda}=\|x+\lambda y, z\|-\lambda \frac{d(\|x+\lambda y, z\|)}{d \lambda}
$$

Therefore, $\frac{d(\|x+\lambda y, z\|)}{d \lambda}(f(\lambda)+\lambda)=\|x+\lambda y, z\|$ and so

$$
\frac{\frac{d(\|x+\lambda y, z\|)}{d \lambda}}{\|x+\lambda y, z\|}=\frac{1}{f(\lambda)+\lambda}
$$

Since $\lambda \in D^{z}(x, y) \cap[M, \infty]$ and Lebesgue measure of the set $\mathbb{R} \backslash D^{z}(x, y)$ is zero, we get

$$
\begin{equation*}
\int_{M}^{\lambda} \frac{\frac{d(\|x+\omega y, z\|)}{d \omega}}{\|x+\omega y, z\|} d \omega=\int_{M}^{\lambda} \frac{1}{f(\omega)+\omega} \tag{10}
\end{equation*}
$$

The function $\phi^{z}(\lambda)=\|x+\lambda y, z\|$ is absolutely continuous and so the integral in the left-hand side of Equation (10) is equal to

$$
\ln \left(\frac{\|x+\lambda y, z\|}{\|x+M y, z\|}\right)
$$

This complete the proof of the Equation (6). A similar argument shows that Equation (7) is also hold.
Theorem 2.10. Let X be a linear 2 -normed space and $T: X \longrightarrow X$ be a linear 2 - isometry then T is one-to-one.

Proof. For every $a \neq 0$, since there exists a point $b \in X$ with $\|T(a), T(b)\|=$ $\|a, b\| \neq 0, T(a) \neq 0$ and hence T is one-to-one.
Let X and Y be linear $2-$ normed spamathbbces. By definition of $2-$ isometry and $B J$-orthogonality we get that, If $T: X$ longrightarrow Y is a linear $2-$ isometry then T preserve $B J$-orthogonality.

Now we prove the Koldobsky Theorem in $2-$ normed space.
Theorem 2.11. Let X be a real $2-$ Banach space and $T: X \longrightarrow X$ be a linear operator that preserve $B J$-orthogonality. Then there exists $k \in \mathbb{R}$ such that $T=k U$ and U is a 2 -isometry.

Proof. Let T be a linear operator preiseving $B J$-orthogonality and $T \neq 0$. Fix $x, z \in X$ such that $T x \neq 0$. Let y be an arbitrary element of X such that $x \neq \lambda y$ for every $\lambda \in \mathbb{R}$. Denote by I_{1} and I_{2} the intervals $[m, M]$ corresponding to the pairs of vectors (x, y) and $(T x, T y)$. Since T preserves $B J$-orthogonality we have $I_{1} \subseteq I_{2}$. Now we prove that $I_{1}=I_{2}$. Let $I=I_{2} \backslash I_{1} \neq \emptyset$ and let $\lambda \in I$ and $\lambda \in D^{z}(x, y) \cap D^{z}(T x, T y)$. Since $\lambda \in I_{2}$ so $T x+\lambda T y \underset{B J}{\perp} T y$. By Lemma 2.8 there exists $k_{\lambda} \in \mathbb{R}$ such that

$$
x+\lambda y \underset{B J}{\perp} x-k_{\lambda} y
$$

so

$$
T x+\lambda T y \underset{B J}{\perp} T x-k_{\lambda} T y
$$

By Lemma 2.6 for any $x^{*} \in S^{\lambda T y}(T x+\lambda T y)$ we have

$$
x^{*}(T y)=0 \quad, \quad x^{*}\left(T x-k_{\lambda} T y\right)=0
$$

Hence

$$
\begin{gathered}
\|T(x+\lambda y), T(\lambda y)\|=x^{*}(T x+\lambda T y)=x^{*}\left(T x-k_{\lambda}+k_{\lambda}+\lambda T y\right) \\
=x^{*}\left(T x-k_{\lambda} T y\right)+k_{\lambda} x^{*}(T y)+\lambda x^{*}(T y)=0
\end{gathered}
$$

and so there exists $\alpha \in \mathbb{R}$ such that

$$
T(x+\lambda y)=\alpha T(\lambda y)
$$

or equivalently

$$
T(x+\lambda y-\alpha \lambda y)=0
$$

Concequently by Theorem 2.10 we get

$$
x=\lambda(1-\alpha) y
$$

which is a contradiction. Therefore $I_{1}=I_{2}$. Hence m, M and the function k_{α} are the same for both pairs (x, y) and $(T x, T y)$. Therefore $\| T(x+$ $\lambda y), T z \|$ and $\|x+\lambda y, z\|$ are constant for every $\lambda \in[m, M]$. Since we have

$$
\|x+\lambda y, z\|=\|x+M y, z\| \exp \left(\int_{M}^{\lambda}(t+f(t))^{-1} d t\right)
$$

and

$$
\|T x+\lambda T y, T z\|=\|T x+M T y, T z\| \exp \left(\int_{M}^{\lambda}(t+f(t))^{-1} d t\right)
$$

cosequently, there exists $k_{1}, k_{2} \in \mathbb{R}$ such that

$$
\begin{gathered}
\|x+\lambda y, z\|=k_{1} \\
\|T x+\lambda T y, T z\|=k_{2}
\end{gathered}
$$

and hence

$$
\|x+\lambda y, z\|=\frac{k_{1}}{k_{2}}\|T x+\lambda T y, T z\|
$$

References

[1] J. Alonso,Uniqueness properties of isosceles orthogonality in normed linear spaces, Ann. Sci. Math. Qu ebec, 18 (1)(1994), 25-38.
[2] V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, Springer, (2012).
[3] A. Blanco and A. Turnsek, ON maps that preserve orthogonality in normed spaces, Proc. Roy. Soc. Edinburgh Sect. A., 136 (2006), 709-716.
[4] Y. J. Cho, C. R. Diminnie, S. Gahler, R. W. Freese, and E. Z. Andalafte, Isosceles orthogonal triple in linear 2- normed spaces, Math. Nachr., 157 (1992), 225-234.
[5] R. Diminnie and A. White, A characterization of strictly convex $2-$ normed spaces, J. KoreanMath. Soc., (1974), 53-54.
[6] R. W. Freese and Y. J. Cho, Geometry of linear 2-normed Space, Nova Science Publishers, Hauppage, NY, USA. 2001.
[7] S. Gahler, Linear 2-normierte, Raume. Math. Nachr., 28 (1964), 1-43.
[8] H. Gunawan Mshadi, S. G. Nursuoiamin, and I. Sihwaningrum, orthogonality in 2 -normed space revisited, Univ. Beograd. Publ. Elektrotehn. Fak., 17 (2006), 76-83.
[9] R. C. James, Orthogonality and linear functional in normed linear spaces, Trans. Amer. Math. soc, 61 (1944), 263-292.
[10] A. Khan and A. Siddiqui, b-orthogonality in 2-normed space,Bull. Calcutta Math. Soc., 74 (1982), 216-222.
[11] D. Koehler and P.Rosenthal, On isometries of normed linear spaces, Studia mathematica, 36 (1970), 213-216.
[12] A. Koldobsky, Operators preserving orthogonality are isometry, Proc. Roy. Soc. Edinburgh. Sect. A., 123 (1993), 835-837.
[13] Z. Lewandowska, Linear operators on generalized 2-normed Spaces, Bull. Math. Soc. Sce. Math. Roumanie, 42 (1992), 353-368.
[14] Z. Lewandowska, On 2-normed Sets, Glasnik Mat., 35 (2003), 99-110.
[15] Z. Lewandowska, Banach-Steinhaus theorems for bounded linear operators with val-ues in a generalized 2 -normed space, Glas. Mat., 3 (58) (2003), 329-340.
[16] Z. Lewandowska, M. S. Moslehian, and A. S. Moghaddam, Hahn-Banach theorem in generalized 2-normed Space, Communication in Mathematical Analysis, 1 (2006), 109-113.
[17] H. Mazaheri and R. Kazemi, Some results on $2-$ inner product spaces, Novi Sad J. Math., 37 (2007), 35-40.
[18] J. Sikorska, Orthogonalities and functional equations, Aequationes Math., 89 (2015), 215-277.
[19] F. Riesz and B. SZ-Nagy,Leconc d'analyse functionelle, Akademiai Kiado, Budapest, (1972).
[20] A. White, 2-Banach spaces, Math Nachr., 42 (1969), 43-60.
[21] A. White and Y. J. Cho, Linear mapping on linear 2-normed spaces, J. KoreanMath. Soc., (1984), 1-6.
[22] C. Zalinescu, Convex Analaysis in General Vector Spaces, World Scientific, (2002).

Mahdi Iranmanesh

Associate Professor of Mathematics
Department of Mathematics
Shahrood University of Technology
Shahrood, Iran
E-mail: m.iranmanesh2012@gmail.com

Ali Ganjbakhsh Sanatee

Assistant Professor of Mathematics
Department of Mathematics
Quchan University of Technology
Quchan, Iran
E-mail: alisanatee62@gmail.com, a.ganjbakhsh@qiet.ac.ir

[^0]: Received: May 2019; Accepted: December 2019

 * Corresponding author

