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Abstract. In this paper, we discuss the periodicity problems in the
finitely generated algebraic structures and exhibit their natural sources
in the theory of invariants of finite groups and it forms an interesting and
relatively self-contained nook in the imposing edifice of group theory.
One of the deepest and important results of the related theory of finite
groups is a complete classification of all periodic groups, that is, the
finite groups with periodic properties. For every integer k ≥ 2 and
a k−generated non-associative algebraic structure S =< A >, where
A = {a1, a2, . . . , ak}, the sequence

xi =

{
ai, 1 ≤ i ≤ k,
xi−k(xi−k+1(. . . (xi−3(xi−2xi−1)) . . .)), i > k,

is called the k-nacci sequence of S with respect to the generating set A,
denoted kA(S). If kA(S) is periodic, we call the length of the period of
the sequence the periodicity length of S with respect to the generating
set A, written LENA(S) and the minimum of the positive integers of
LENA(S) will be mentioned as periodicity invariant of S, denoted by
λk(S). However, this invariant has been studied for groups and semi-
groups during the years as well as the associative property of S where
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above sequence was reduced to xi = xi−kxi−k+1 . . . xi−3xi−2xi−1, for
every i ≥ k+ 1. Thus, we attempt to give explicit upper bounds for the
periodicity invariant of two infinite classes of finite non-associative 3-
generated algebraic structures. Moreover, two classes of non-isomorphic
Moufang loops of the same periodicity length were obtained in the study.
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1 Introduction

The Fibonacci sequence and its related higher-order sequences such as
k-nacci are generally viewed as sequences of integers. In 1990, peri-
odic sequences in associative algebraic structures were considered mainly
in groups and semi-groups by the researchers in following of the basic
k-nacci sequences and the periods of these sequences in finite groups.
However, these structures are 2 or 3 generated groups, one may consult
[2, 3, 6, 7, 8, 14, 15], for examples. The article Johnson [11] introduced
the invariant λ(G) for 2-generated groups and proposed a distinctive
example of infinite group with an upper bound for λ(G). Meanwhile,
we are interested to use the notation for non-associative algebraic struc-
tures, the loops and specially two infinite classes of finite loops. Our
notation are merely standard and following [1, 4, 5, 10, 12], and here we
recall the definitions before analyzing the problem:
A quasi-group is a non-empty set with a binary operation so that is
applied to all three elements x, y and z of the set, and the equation
xy = z has a unique solution for any two of three specified elements.
A quasi-group with neutral element is called a loop. A Moufang loop
is a loop that holds each of equivalent scales, ((xy)x)z = x(y(xz)),
x(y(zy)) = ((xy)z)y), (xy)(zx) = x((yz)x) and (xy)(zx) = (x(yz))x.
Moufang loops are certainly well-known loops that more information
one may consult [4, 6, 8, 9]. Also, Moufang loops are generally non-
associative forms with more properties in the groups. In 1978, Chein
[7] began to classify Moufang loops and identified all ones with n order,
where 1 ≤ i ≤ 63. For any more details, one may see the interesting
efforts in [5] and [13]. The following table shows all of non-associative
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Moufang loops with n order, obviously:

n 12 16 20 24 28 32 36 40 42 44 48 52 54 56 60 64 81 243

M(n) 1 5 1 5 1 71 4 5 1 1 51 1 2 4 5 4262 5 72

where M(n) means the number of non-isomorphic Moufang loops with
n order. Also, Chein [4] introduced a class of Moufang loops M(G, 2)
as follows:
Let G be a finite group of order n and u be a new element (u /∈ G). The
multiplication ◦ on G ∪Gu is defined by:

g ◦ h = gh, if g, h ∈ G,
g ◦ (hu) = (hg)u, if g ∈ G, hu ∈ Gu,
(gu) ◦ h = (gh−1)u, if gu ∈ Gu, h ∈ G,
(gu) ◦ (hu) = h−1g, if gu, hu ∈ Gu.

But, the resulting loop M(G, 2) = (G∪Gu, ◦) is a typical Moufang loop.
It is obvious that M(G, 2) will be a non-associative if and only if G is
non-abelian. The Moufang loops naturally considered as multiplicative
loop of Octonions in algebra and as Moufang Planes in the projective
geometry. Also, two Moufang loops M(G1, 2) and M(G2, 2) of the Chein
type are said to be non-isomorphic structure if the groups G1 and G2

are non-isomorphic groups. By focusing on non-associative Chein type
Moufang loops, for every integer n ≥ 3, we will consider two infinite
classes of finite loops, where the group G is D2n, the dihedral group
and is Q2n , the generalized quaternion group. Note that in the above-
mentioned definition, for every 2-generated group G, the Moufang loops
M(G, 2) of Chein type are all 3-generated.

Our next preliminary definition concerning non-associative struc-
tures is:
Definition 1.1. Let S be a finite k-generated of non-associative alge-
braic structure and k ≥ 2 be a given integer. Then, the positive integer
is

λk(S) =min{LENA(S) | S = 〈A〉},

where LENA(S) is the length of period of the sequence

xi =

{
ai, 1 ≤ i ≤ k,
xi−k(xi−k+1(. . . (xi−3(xi−2xi−1)) . . .)), i > k,
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of the elements of S, and A = {a1, . . . , ak} is a generating set of S. We
call λk(S) as the periodicity invariant of S and LENA(S) is called the
periodicity length of the given sequence with respect to the generating
set A.

2 Main results

For a given integer n ≥ 3, by concerning 2-generated non-abelian groups
D2n =< a, b | an = b2 = (ab)2 = 1 >, Q2n =< a, b | a2n−1

= 1, b2 =
a2

n−2
, (ab)2 = 1 > and the corresponding non-associative finite Moufang

loops M(D2n, 2) and M(Q2n , 2), our main results are:

Proposition 2.1. Let D2n = 〈a, b〉 be a dihedral group, where n ≥ 3.
Then, according to the generating set A = {a, b, u}, the periodicity length
of the Moufang loop M(D2n, 2) is equal to:

LENA(M(D2n, 2)) =

{
2n, if n is even,
4n, if n is odd.

Proposition 2.2. Let Q2n = 〈a, b〉 be a generalized quaternion group,
where n ≥ 3. Then, the periodicity length of the Moufang loop M(Q2n , 2)
is LENA(M(Q2n , 2)) = 2n with respect to the generating set A = {a, b, u}.

Corollary 2.3. For every integer n ≥ 3, the upper bounds of the peri-
odicity invariant of the loops M(D2n, 2) and M(Q2n , 2) will be defined
as follows:

λ(M(D2n, 2)) ≤ 2n, if n is even,
λ(M(D2n, 2) ≤ 4n, if n is odd,
λ(M(Q2n , 2) ≤ 2n, for every n.

Moreover, for every integer k ≥ 3, the Moufang loops M(D2×2k , 2) and
M(Q2k+1 , 2) are two finite non-isomorphic Moufang loops with a same
periodicity length of 2k+1.

3 The proofs

On the behaviour of sequences of elements of loops of Chein type, two
preliminary results are necessary. In the following lemma, we checked
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the elements of the sequence {xi}∞i=1 of M(G, 2), where G =< a, b > is
a finite 2-generated group and the relation aba = b is hold.

Lemma 3.1. Let G = 〈a, b〉 be a 2-generated group satisfying the rela-
tion aba = b. Then, the elements of the sequence {xi}∞i=1 of 3-generated
Moufang loop M = M(G, 2) meet to the generating set A = {a, b, u}
may be presented as:

xm =



a, if m ≡ 1, 5 (mod 8),
b, if m ≡ 2 (mod 8),

a−(
m−3

2
)u, if m ≡ 3 (mod 8),

a−(
m−2

2
)bu, if m ≡ 0, 4 (mod 8),

b−1, if m ≡ 6 (mod 8),

a−(
m−3

2
)b2u, if m ≡ 7 (mod 8).

Proof. By definition of periodicity length, it is obvious that x1 = a,
x2 = b and x3 = u. Also, to see the following relations easy in sense:

x4 = x1(x2(x3)) = a(b(u)) = a(bu) = bau = a−1bu,

x5 = x2(x3(x4)) = b(u(a−1bu)) = b(b−1a) = bb−1a = a.

Let m ≡ 1 (mod 8) and suppose that the assertion holds for every inte-
ger less than m. Then, we get

xm−3 = b−1, because of m− 3 ≡ −2 (mod 8),

xm−2 = a−(
m−5

2
)b2u, because of m− 2 ≡ −1 (mod 8),

xm−1 = a−(
m−3

2
)bu, because of m− 1 ≡ 0 (mod 8).

Therefore, by considering xm = xm−3(xm−2(xm−1)), the result is:

xm = b−1(a−(
m−5

2
)b2u(a−(

m−3
2

)bu))

= b−1(b−1a(
m−3

2
)a−(

m−5
2

))b2

= b−2a(
m−3−m+5

2
)b2

= a.

Now, let m ≡ 5 (mod 8) and suppose that the assertion holds for every
integer less than m. Then, we get

xm−3 = b, because of m− 3 ≡ 2 (mod 8),

xm−2 = a−(
m−5

2
)u, because of m− 2 ≡ 3 (mod 8),

xm−1 = a−(
m−3

2
)bu, because of m− 1 ≡ 4 (mod 8).
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So, by considering xm = xm−3(xm−2(xm−1)), the result is:

xm = b(a−(
m−5

2
)u(a−(

m−3
2

)bu))

= b(b−1a(
m−3

2
)a−(

m−5
2

))

= a(
m−3−m+5

2
)

= a.

However, these show the assertion when m ≡ 1 (mod 8) and m ≡ 5
(mod 8). Of course, the proofs are similar in other cases. �

As the result of the Lemma 3.1, we will have the following Lemmas:

Lemma 3.2. Let D2n = 〈a, b〉 be a dihedral group, where n ≥ 3. The el-
ements of the sequence {xm}∞1 is related to the Moufang loop M(D2n, 2)
and meet to the generating set A = {a, b, u}, xm may be obtained by

xm =


a, if m ≡ 1, 5 (mod 8),
b, if m ≡ 2, 6 (mod 8),

a−(
m−3

2
)u, if m ≡ 3, 7 (mod 8),

a−(
m−2

2
)bu, if m ≡ 0, 4 (mod 8).

Proof. By using Lemma 3.1 the assertion holds when m ≡ 0, 1, 2, 3, 4, 5
(mod 8). In the remainder cases when m ≡ 6, 7 (mod 8), the relation
b2 = 1 is considered for the group D2n, which yields xm = b = b−1 and
so the proof is complete . �

Lemma 3.3. Let Q2n = 〈a, b〉 be a generalized quaternion group, where
n ≥ 3. The elements of the sequence {xm}∞1 in the Moufang loop
M(Q2n , 2) and meet to the generating set A = {a, b, u}, xm may be
obtained by

xm =



a, if m ≡ 1, 5 (mod 8),
b, if m ≡ 2 (mod 8),

a−(
m−3

2
)u, if m ≡ 3 (mod 8),

a(−
m−2

2
)bu, if m ≡ 0, 4 (mod 8),

b3, if m ≡ 6 (mod 8),

a−(
m−3

2
)b2u, if m ≡ 3 (mod 8).
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Proof. Let m ≡ 6 (mod 8). By considering the presentation of Q2n

and the binary operation in M(Q2n , 2), we get xm = b−1 = b3. The
proof in other cases are similar to that of Lemma 3.1. �

Now, by using Lemmas 3.2 and 3.3, we can prove main Propositions
here.
Proof.[ Proof of Proposition 2.1.] By Lemma 3.2, the least integer,
l = LENA(M(D2n, 2)) satisfies all of the conditions xl+1 = a, xl+2 =
b, xl+3 = u. If l ≡ 1 (mod 8), then

xl+1 = b, xl+2 = a−(
l−1
2

)u, xl+3 = a−(
l
2
)bu.

which yields to the contradiction a = b. Let l ≡ −1 (mod 8). Then, we
have

xl+1 = a−(
l−1
2

)bu, xl+2 = a, xl+3 = b.

But we get a same contradiction again in a = b. For the case l ≡ 2
(mod 8),

xl+1 = a−(
l−2
2

)u, xl+2 = a−(
l
2
)bu, xl+3 = a.

So, we get a contradiction a = u, that is an ideal case. For simplicity,
we omit the proofs in other cases. Finally, let l ≡ 0 (mod 8). Then,

xl+1 = a, xl+2 = b, xl+3 = a−(
l
2
)u.

Therefore, the following relation will be given:

a−(
l
2
)u = u.

Subsequently, this yields a−(
l
2
) = 1. So, n divides −( l

2). Since l ≡ 0
(mod 8) so by letting l = 8s, we have:

s =

{
n
4 , if n is even,
n
2 , if n is odd.

Thus,

l = 8s =

{
2n, if n is even,
4n, if n is odd.

For even and odd values of n, we consider λ(M(D2n, 2)) ≤ 2n and
λ(M(D2n, 2)) ≤ 4n, respectively. �
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Proof.[ Proof of Proposition 2.2.] By Lemma 3.3, the least integer

l = LENA(M(Q2n , 2))

satisfies all of the conditions xl+1 = a , xl+2 = b , xl+3 = u. If l ≡ 1
(mod 8). Then,

xl+1 = b, xl+2 = a−(
l−1
2

)u, xl+3 = a(
l+1
2

)bu.

Which it is in a contradiction by a = b. Let l ≡ 2 (mod 8). Then,

xl+1 = a−(
l−2
2

)u, xl+2 = a(
l+1
2

)bu, xl+3 = a.

We again get the contradiction as a = au. Now let l ≡ 3 (mod 8). Then,

xl+1 = a(
l−1
2

)bu, xl+2 = a, xl+3 = b3.

Which yields a contradiction in a = b. However, the proofs when m ≡
−3,−2,−1 (mod 8) are similar. Finally, let l ≡ 0 (mod 8). Then,

xl+1 = a, xl+2 = b, xl+3 = a−(
l
2
)u.

Consequently, xl+3 = a−(
l
2
)u = u which yields that,

a−(
l
2
) = 1.

So, 2n−1 divides −( l
2) and

( l
2) = 2n−1k,

where k is a positive integer. Therefore, l = 2 × 2n−1k = 2nk. So, by
definition of l, we have, l = 2n and this yields, λ(M(Q2n , 2)) ≤ 2n. �
Proof.[ Proof of Corollary 2.3.] The upper bounds for the periodicity
invariants of M(D2n, 2) and M(Q2n , 2) are in straightforward results of
Propositions 3.1 and 3.2. In other hands, since

LENA(M(D2×2k , 2)) = LENA(M(Q2k+1 , 2)) = 2k+1,
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the result of these propositions satisfies for every k ≥ 3. So, the Moufang
loops are in the same orders but in non-isomorphic structures, since there
are 2k+1+2k+2 elements by order 2 in M(D2×2k , 2) just against 2k+1+2
elements by order 2 in M(Q2k+1 , 2). �

At the end of this study, verifying the equation |M | = λ(M) for
possible Moufang loops M was considered in the periodicity invariant of
finitely generated algebraic structures.
According to [4, 5, 10, 13] and all of the loops with an order less than
65 and loops with orders 81 and 243 as well as only known finite non-
associative Moufang loops, we could get into the following table for
seven 3-generated loops. Indeed, by performing a procedure in Gap [9],
we examined all the generating sets for each loop. In this table M(k, i)
denotes the Moufang loop in order k and i is the version of the loop in
order k, as same as findings in [4, 5].

The Moufang loop M λ(M)

M(24, 4) 24
M(40, 2) 40
M(40, 3) 40
M(40, 4) 40
M(44, 1) 44
M(48, 17) 48
M(56, 3) 56
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