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On the N-Structure Spaces
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Abstract. The family Mx C P(X) is called an N-structure, when it
is closed under the arbitrary intersection. This concept has been studied
and considered in algebra, specially in lattices. Using this concept, we
define a quasi topological structure which is called N-structure space. By
studying this space, we attempt to explain some algebraic concepts
through this structure.
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1. Introduction

A lattice L is called a complete lattice if VA exists for every A C L; or
equivalently, AA exists for every A C L, and also is called a distributive
lattice if aV (bAc¢) = (aVb) A (aV c), for every a,b, c € L. Supposing X
is an ordered set, a function f : X — X is said to be a closure operator
(interior operator) if it has the following properties:

(i) f is an increasing function; i.e., if a < b, then f(a) < f(b) for every
a,be X.

(ii) f is idempotent; i.e., f(f(a)) = f(a) for every a € X.

(iii) f is extensive (contractive); i.e., a < f(a) (f(a) < a) for every
acX.
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A nonempty subset S of an ordered set is said to be directed if every
pair of S has an upper bound in S. A nonempty family D of subsets of
a set X is said to be closed under directed unions if U;c7A; € D for any
directed family {4;};cr in D.

For any set X, an intersection structure (briefly, N-structure) on X is
a family Mx of subsets of X which is closed under arbitrary inter-
section. We say (X, Mx), briefly X, is an N-structure space. Clearly,
if (X, Mx) is an N-structure space, then Mx is a complete lattice in
which for every nonempty family {A;};cr, we have

/\iEIAz' = mieIAi ,  Vier A; = ﬂ{B € Mx: UieIAi - B}

If Mx is a distributive lattice, we say (X, Mx) is a distributive N-
structure space. Obviously, X is the top element of Mx. The least
element of this complete lattice is denoted by o and we call it zero.

It is clear that if X is any algebraic structure (for example, module, ring,
group, vector space) and M x is the collection of all substructures of X
(resp., submodules, ideals, subgroups, subspaces), then (X, Mx) is an
N-structure space. Hence this concept is a suitable model for studying
and generalizing algebraic structures. Throughout this article R is a
commutative ring with 1 # o. We use the notations Id(R), Spec(R),
Max(R) for the set of all ideals , the set of all prime and the set of all
maximal ideals of the ring R, respectively. We denote the annihilator of
a subset S C R by Ann(S), i.e., Ann(S) = {r € R : rS = o}. In Section
2, we define the closure and interior of a subset in an N-structure space
and study their properties. We will see that the concept of closure and
interior are the same as closure and interior in a topological space. Hence
they introduced two topologies 7 and 7y, which in general we show that
the topology 7 is stronger than the topology 7. In Section 3, we define
the cocepts of compactness, join-compactness and connectivity in an
N-structure space and investigate their properties.
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2. General Properties of N-Structure Spaces

Definition 2.1. Let (X, Mx) be an N-structure space and A C X. The
element (A) of Mx generated (or spanned) by A is the intersection of
all elements u € Mx that contain A. In the case that A is the finite set
{a1,a9,...,a,}, (A) is written as (a1, az,...,ay), and is referred as the
element generated by ai,ao,...,a,. If for an element x of X, we have
() = X, then we call x is an invertible element of X. The set of all
invertible elements of X is denoted by U(X).

Definition 2.2. If (X, Mx) is an N-structure space and E C X, the
closure of E, i.e., E is defined by

E:{xeX:mEEorEﬂquforaZZUGMx},

where My, is the set of all elements u of Mx containing x. If we want
to emphasize the set X, we use the notation clx E for the closure of E.

Lemma 2.3. The mapping E — E in an N-structure space (X, M) is
a closure operator on X and moreover has the following properties:

(a) For any collection {A;}icr of subsets of X, Ujer A; = Uier A;.

(b) For all u € M:

)u\o=mu)o.

i) X\u=X\u.

i) X\ (u\o)=X\ (u)\o).

Proof. The proof is straightforward. [

Example. Let R be a ring. In the N-structure space (R,Id(R)), for any
nonzero ideal I, we have I = R if and only if I is an essential ideal of R.

Definition 2.4. If (X, Mx) is an N-structure space and A C X, the
interior of A, i.e., A° is the set

A°={r e X :uC A for someu & My}.

It is easy to see that A° ={x € X : (z) C A}.

Lemma 2.5. The operation A — A° in an N-structure space (X, Mx)
1 an interior operation and moreover has the following properties:
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(a) For any collection {A;}icr of subsets of X, (NicrAi)° = NierAS.
(b) For allu € Mx, u° =u.

Proof. The proof is straightforward. [

The previous lemmas show that the closure and interior have the same
properties as in the topological spaces. We denote the topologies induced
by closure and interior maps, by 7 and 7o, respectively. By the definition
and previous lemma, it is clear that M x is a base for the topology 7.

The next lemma gives us more information regarding 7 and 7o.

Lemma 2.6. Let (X, Mx) be an N-structure space and A C X. Then
the folloeing statements hold.

(a) Bo = {{x) : = € X} is a base (in fact the smallest base) for the
topology 7.

(b) The set B = {(z) \o: x € X \ o} Uo is the smallest base for the
topology 7. Hence if o #+ &, then 7o C 7.

(c) x € int; A if and only if x € A and (z) \ o C A.

(d) If o C A, then int; A = int;A.

(e) If AnNo =@, then cl. A = ¢l ,A. Clearly if o = &, then these two
toplogies coincide.

(f) cl:A=cl;,(A\ o) UA and int; A = int,,(AUo)\ (o\ A).

Proof. (a). Clearly (3, is a base for the topology 7,. Now, suppose that /3
is a base for 7, and (x) € .. Thus, B € 3 exists such that z € B C (x)
and consequently (x) C B C (z). Therefore, () = B € (3.

(b). It is similar to (a).

(c). It is evident by part (b) and the fact that every point of o is isolated
with respect to the topology 7.

(d). Since 7, C 7, clearly int,, A C int.A. Assume that x € int,A. Then
by (c) we have (x) \ o C A and so (x) = ((z) \ o) Uo C A. Therefore,
x € int;, A.

(e). Since 7, C 7, clearly cl;A C ¢l A. Assume that = € ¢l A. Then,
clearly @ # (z) N A C A and consequently (x) N A € o. Hence, x € cl; A.
(f). By (e) we can write

c:A=cl;((A\o)U(ANo)=cl;(A\o)UA=cl (A\o)UA.
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Also, by (d) and the fact that o\ A is clopen with respect to the topology
T, we can write

int, A = int, (AU0)\(0\A)) = (int,(AUo))\(e\A) = (intr,(AU))\(o\A).

Definition 2.7. Let (X, Mx) be an N-structure space and Y C X. We
define:
My ={unY: ue Mx}.

Obviously, My is closed under arbitrary intersection. So (Y, My) is an
N-structure space and we call it the subspace of (X, Mx). It is clear that
if Y € Mx then My ={ue Mx: uCY}.

It goes without saying that (Y, My-) is a topological subspace of (X, M x)
with respect to 7,. The following proposition shows that this is true for
T, too.

proposition 2.8. If (X, Mx) is an N-structure space and A CY C X,
then clyA=clxANY.

Proof. It is easy to see that (y) N A ¢ oy if and only (y) N A € ox. By
this fact, one can easily see that clyA =clxANY. O

Remark 2.9. Let R be a ring, in the N-structure space (R,1d(R)), for
a nonzero subset A of R, it is clear that AU U(R) C A, where U(R)
is the set of all invertible elements of R. The natural question is, when
does the equality A U U(R) = A hold. The next proposition is a partial
answer to this question.

proposition 2.10. Let R be a ring. In the N-structure space (R,1d(R)),
for any proper nonzero ideal I of R, I UU(R) = I if and only if one of
the following conditions hold.

(a) Max(R) = {Mo} and I = M,.

(b) Spec(R) = {M,, M1}, where I = M, and M; = Ann(I).

(¢) Max(R) = {M,}, I € Ann(I) = M, and I C P for each P €
Spec(R).

Proof. =) First we notice that R\ U(R) = I U Ann(I). Let I C M, €
Max(R), then M, C I UAnn(I), and so M, C Ann(I) or M, C I. Hence,
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M, = I or otherwise I C M, = Ann(I). Now assume that I = M. In
this case we show that if (a) does not hold, then (b) hold. Suppose
that M is an arbitrary maximal ideal different from M,. Clearly, M; C
R\ U(R) = IUAnn(I) and so M; = Ann(I). Now, we show that
Spec(R) = {M,, M1}. To see this, suppose that P € Spec(R). Then
M,M; =0 C P and so M, = P or M; = P.

<) If (a) or (c) hold, then it is clear that I = I U U(R). Otherwise,
suppose that Spec(R) = {M,, M1}, I = M, and M; = Ann(I). Now,
assume that x ¢ I UU(R), then it is sufficient to show that (z) N I = o.
Let y = rx € I = M,. Clearly x € My and so M, = o. Therefore,
y? = r?2? = yro € MoM; = o C M, and so r € M,. Consequently,
y=rx € M M =0o0. U

The following corollary is immediate.

Corollary 2.11. Let R be a ring, in the N-structure space (R,Id(R)),
let I be a proper ideal of R such that I & Ann(I) (for example in the
reduced ring this condition holds). Then I UU(R) = I if and only if one
of the following conditions hold.

(a) Max(R) = {M1} and I = M.

(b) Spec(R) = {M,, M1}, where I = M, and M; = Ann(I).

proposition 2.12. Let X be a vector space over a field F', Mx be the
set of all subspaces of X and o € A C X. Then the following statements
are equivalent:

(a) A= A.

(b) A is closed under scaler multiplication.

(c) A is the union of a family of subspaces of X.

Proof. (a) = (b). Let a € A and x € F. If @ = 0, then we have nothing
to do. Otherwise a = Lza. Hence, a € (za) N A and so za € A = A.

(b) = (c). It is clear, since in this case (a) = {za: z € F} C A and so
A= Ua€A<CL>. -

(c) = (a). Suppose that b € A, then (b) N (Ugea(a)) = (b)) N A € o and
so there exists a € A such that (b) N (a) € o. Therefore, b € (a) C A. O

The following corollary is immediate.

Corollary 2.13. Let X be a vector space over a field F', Mx be the set
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of all subspaces of X and o € A C X. If T is the topology on X induced
by the closure or interior map, then A is closed if and only if A € T.

3. Compactness and Connectedness

In this section we define essential concepts like compactness and con-
nectedness in (X, Mx), and establish their elementary properties.

Definition 3.1. Let (X, Mx) be an N-structure space, A C X and
K C Mx. A is said to be K-compact (K-join compact) if each cover
(join cover) of elements of K for A, has a finite subcover (finite join
subcover). For simplicity, the Mx-compact (Mx-join compact) subset
of X iis called compact (join compact).

The following examples show that these concepts need not imply each
other.

Example. (1). Let m; € ma C --- be a strictly ascending chain of
sets. Assume that A = UX;m; and X = m, = AU {z}, for some
x ¢ A. If we consider My = {m; :i=20,1,2,---}, then (X, Mx) is an
N-structure space. In this N-structure space, according to the equality
me = Vi2,m,, it is easy to see that m, is compact while it is not join
compact.

(2). In the N-structure space (Z,1d(Z)), let A be the set of all prime
numbers. Then clearly, A is join compact but it is not compact.

proposition 3.2. Suppose (X, Mx) is an N-structure space in which
Mx is closed under directed unions. If A C X is compact, then it is
join compact.

Proof. Suppose U C My is a join cover of A. Set

V={V, m: Fis a finite set of U}.

meF
By assumption U,_,n € Mx and also we have U _,n = V _,n =
V,.cm- Since A is compact, there exists a finite set F, C V such
that A C U, n. Clearly, there exists a finite subset F' C U such that
AC Uner, 1 - Vier, W=V, cpM. U
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The previous proposition immediately shows that if X is an R-module
and M x is the set of all submodules of X, then every compact subset
of X is join compact.

proposition 3.3. Let (X, Mx) be an N-structure space in which M is
closed under directed unions, and A C X. The following statements are
equivalent:

(a) A is join compact.

(b) A C VP! (a;), where {ai,...,an} is a finite subset of A.
Furthermore, if A € M then

(c) A is finitely generated.

Proof. The proof is straightforward. [

Corollary 3.4. Let (X, Mx) be an N-structure space. The following
statements are equivalent:

(a) X is Noetherian (i.e., satisfies the ascending chain condition on
elements of Mx ).

(b) Each u € Mx is join compact.

(¢) Each uw € Mx is finitely generated.

Proof. It is enough to prove (a) < (c). The proof of this equivalence is
similar to what we have seen in algebra. [

Definition 3.5. Let (X, M x) be an N-structure space and u,v € Mx. We
say that {u,v} is a separation of X if u is a complement of v. A sepa-
ration {u,v} of X is called trivial if one of them is zero. We say that X
is Mx-connected (briefly, connected) if each separation of X is trivial.

For a subspace of an N-structure space, we can define different types of
connectivity as below.

Definition 3.6. Suppose (X, Mx) is an N-structure space and Y C
X. We say that'Y is

i) Mx-connected if whenever u,v € Mx and u Av = o such that Y C
uVuv, thenY Cu orY Cu;

i) weakly Mx-connected if for u,v € Mx with uw AN v = o such that
Y CuVo, we haveYNuCoorYNuvCo.

If X is a ring, M x is the set of all ideals and I is an ideal of X, then
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the previous definition is rewritten as follows:

i) I is Mx-connected , if I C J @& K, where J and K are two ideals of
X,then I CJorl CK.

ii) I is Weakly M x-connected, if J and K are two ideals of X and
ICJ®K,thenINJ=o0corINK =o.

The next proposition shows that the M x-connectedness implies the
weakly M x-connectedness.

proposition 3.7. Let (X, Mx) be an N-structure space and Y C X. If
Y is Mx-connected, then it is weakly M x -connected.

Proof. Assume that u,v € Mx, uAv=ocand Y C uVv. By assumption
and without loss of generality, we may assume that ¥ C u. We show
that Y Nv Co. Let y e YNo, theny € uNv=o0. Thus Y Nv C o and
the proof is complete. [

In the next examples, first we show that the converse of the previous
proposition is not true in general. This examples also show that con-
nected and weakly M x-connected are independent from each other, and
in addition, weakly M x-connected does not implies M x-connected.

Example. Let X be the vector space R? over R and M x be the set of
all subspaces of X. Then we can easily see that every one dimensional
subspace is weakly M x-connected but it is not M x-connected.

Example. (1). Let X = Z, Mx = Id(Z) and let I and J be two
incomparable ideals of Z. If Y = IAJ, then we have (Y NI)N(Y NJ) =
YNInJ=oand (YNI)N (Y NJ)=1IAJ =Y. Hence, Y is not
connected whereas it is M x-connected , for, Z is a uniform ring.

(2). In the N-structure space (Zsp,Id(Zsp), the ideal (4) € M is not
indecomposable; i.e., (4) is connected whereas it is not even weakly
M x-connected.

Example. Let X be any set and Y, A, and B are subsets of X, such
that AN B = @. In addition, suppose that Ay =Y NAand Bi=YNB
are nonempty sets for which Ay U B; is a proper nonempty set. Set
Mx ={9,A,,B1,A1UB1,A, B, X} and My = {@,A;, B, AjUB;, Y }.
Now, we show that Y is My-connected whereas is not weakly M x-
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connected. We have Y C AVB, ANB =9, YNA=A) # & and
Y NB =B # g, then Y is not weakly M x-connected. Now, let ¥ =
DV C such that C N D = @. By the assumption and the definition of
My, we see that D or C must be Y. Thus Y is My-connected.

In the following two propositions we give some conditions such that the
weakly M x-connectedness implies the M x-connectedness.

proposition 3.8. Let (X, Mx) be an N-structure space andY C X. The
following statements are hold.

(a) If Y is weakly M x -connected and (X \Y )Uo includes no any nonzero
element of Mx, then'Y is M x-connected.

(b) If Y € Mx is weakly M x-connected, then it is Mx -connected.

(c) If Y € Mx is Mx-connected, then Y is connected.

Proof. (a). Assume that u,v € Mx, (uNY)N(vNY) = oy and
Y =(@wnY)V (vNnY). In this case it is clear that ¥ C u V v and
uNv C (X\Y)Uo. Hence Y C w Vv and unNwv C o. Therefore, by
assumption Y Nu Coor Y Nwv Co.

(b). Assume that u,v C Y, uAv =oand Y = uVv. Then by assumption
YNu=uCoorYNuv=wvCo.

(c). Let Y = u Vv, where u,v € Mx are two subsets of Y and uAv = o.
Since Y is M x-connected, we have Y C uw or Y C v. Therefore, Y = u
or Y = v and consequently Y is connected. [

proposition 3.9. Let (X, Mx) be a distributive N-structure space and
let Y € Mx. IfY is a connected, then Y is Mx-connected subspace.

Proof. Suppose that Y € mVn and mAn = mNn = o. In this case by
the distributive assumption we have: YN(mvn) = (YNm)Vv(YNn) =Y.
Since Y is connected, we must have Y N'm =Y or Y Nn = n. Hence
Y CmorY Cn. Thus, Y is a M x-connected subspace. [

proposition 3.10. Let (X, Mx) be an N-structure space and Y C
X. Then the following statements are hold.

(a) If Y is weakly Mx-connected and Y C B C Y, then B is weakly
M x -connected.

(b) If for each A € A, Yy C X is Mx-connected and NxeaYx € o, then
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Uaea Yy is Mx-connected.

(c) If Y C X is Mx-connected, then (Y) is Mx-connected.

(d) If for each A € A, Y\ C X is Mx-connected and NyeaYx € o, then
Vaea Yy s Mx-connected.

Proof. (a). Suppose that B C mV n, where m,n € Mx and mVn = o.
By assumption, Y Nm C o or Y Nn C o. This is equivalent to the fact
that BNm Coor BNn C o.

(b). Let UyepYy € m V n such that m,n € Mx and m V n = o. By
hypothesis, for every A € A we have Yy C m or Yy, C n. If, on the
contrary, there exist A\;, A2 € A such that Y\, € m and Y), C n, then
o # Yy, NY,, € mNn = o and this is a contradiction. Therefore, Y C m
for every A € A or Y\ C n for every A € A and consequently Uycpa Yy C m
or UyepaYy C n.

(c). Suppose that (Y) C m V n such that m,n € Mx and mV n =
o. Hence, by hypothesis, Y C m or Y C n and consequently (Y') C m or
(Y)Cn. O

proposition 3.11. In the N-structure space (R,1d(R)), let I be an ideal
such that any element a € I has a root; i.e., there exists a natural number
n > 1 and b € I such that b"™ = a. Then the three kinds of connectedness
for I are equivalent.

Proof. By part (b), (c) of Proposition 3.8 and by proposition 3.12, it is
enough to show that if I is M x-connected, then I is connected. To see
this, suppose that J, H are two ideals where JOH =oand I C JVH =
J + H. It suffices to show that I = I'NJ + I N H. Clearly, we have
INJ+INH CI. Now, assume that a € I. Then, there exist b € I and
n > 1 such that " = a. By hypothesis, there exist ¢ € J and d € H for
which b =c+d. Hence, a =bb" ' =cb" L +db" e INJ+INH. O

proposition 3.12. Let X be a ring, Mx be the set of all semiprime
ideals of X and I € Mx. Then the three kinds of connectedness for I
are equivalent.

Proof. Similar to previus proposition, it is enough to show that for every
J,H € Mx with JNH =o,if I C J+H, thenI C INJ+INH. Assuming
a € I, there exist b € J and ¢ € H for which a = b + c. It suffices to



236 J. HASHEMI

show that b € I NJ and ¢ € I N H. Clearly, ab = b*> + bc = b* and so
b> € INJ, hence b € INJ. The proof of ¢ € I N H is similar. Therefore
a€InNJ+INH, and the proof is complete. [
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