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On the ∩-Structure Spaces
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Abstract. The family MX ⊆ P(X) is called an ∩-structure, when it
is closed under the arbitrary intersection. This concept has been studied
and considered in algebra, specially in lattices. Using this concept, we
define a quasi topological structure which is called ∩-structure space. By
studying this space, we attempt to explain some algebraic concepts
through this structure.
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1. Introduction

A lattice L is called a complete lattice if ∨A exists for every A ⊆ L; or
equivalently, ∧A exists for every A ⊆ L, and also is called a distributive
lattice if a∨ (b∧ c) = (a∨ b)∧ (a∨ c), for every a, b, c ∈ L. Supposing X
is an ordered set, a function f : X → X is said to be a closure operator
(interior operator) if it has the following properties:

(i) f is an increasing function; i.e., if a 6 b, then f(a) 6 f(b) for every
a, b ∈ X.

(ii) f is idempotent; i.e., f(f(a)) = f(a) for every a ∈ X.

(iii) f is extensive (contractive); i.e., a 6 f(a) (f(a) 6 a) for every
a ∈ X.
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A nonempty subset S of an ordered set is said to be directed if every
pair of S has an upper bound in S. A nonempty family D of subsets of
a set X is said to be closed under directed unions if ∪i∈IAi ∈ D for any
directed family {Ai}i∈I in D.

For any set X, an intersection structure (briefly, ∩-structure) on X is
a family MX of subsets of X which is closed under arbitrary inter-
section. We say (X,MX), briefly X, is an ∩-structure space. Clearly,
if (X,MX) is an ∩-structure space, then MX is a complete lattice in
which for every nonempty family {Ai}i∈I , we have

∧i∈IAi = ∩i∈IAi , ∨i∈I Ai = ∩{B ∈MX : ∪i∈IAi ⊆ B}.

If MX is a distributive lattice, we say (X,MX) is a distributive ∩-
structure space. Obviously, X is the top element of MX . The least
element of this complete lattice is denoted by ◦ and we call it zero.

It is clear that if X is any algebraic structure (for example, module, ring,
group, vector space) and MX is the collection of all substructures of X
(resp., submodules, ideals, subgroups, subspaces), then (X,MX) is an
∩-structure space. Hence this concept is a suitable model for studying
and generalizing algebraic structures. Throughout this article R is a
commutative ring with 1 6= ◦. We use the notations Id(R), Spec(R),
Max(R) for the set of all ideals , the set of all prime and the set of all
maximal ideals of the ring R, respectively. We denote the annihilator of
a subset S ⊆ R by Ann(S), i.e., Ann(S) = {r ∈ R : rS = ◦}. In Section
2, we define the closure and interior of a subset in an ∩-structure space
and study their properties. We will see that the concept of closure and
interior are the same as closure and interior in a topological space. Hence
they introduced two topologies τ and τ0, which in general we show that
the topology τ is stronger than the topology τ0. In Section 3, we define
the cocepts of compactness, join-compactness and connectivity in an
∩-structure space and investigate their properties.
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2. General Properties of ∩-Structure Spaces

Definition 2.1. Let (X,MX) be an ∩-structure space and A ⊆ X. The
element 〈A〉 of MX generated (or spanned) by A is the intersection of
all elements u ∈MX that contain A. In the case that A is the finite set
{a1, a2, . . . , an}, 〈A〉 is written as 〈a1, a2, . . . , an〉, and is referred as the
element generated by a1, a2, . . . , an. If for an element x of X, we have
〈x〉 = X, then we call x is an invertible element of X. The set of all
invertible elements of X is denoted by U(X).

Definition 2.2. If (X,MX) is an ∩-structure space and E ⊆ X, the
closure of E, i.e., Ē is defined by

Ē = {x ∈ X : x ∈ E or E ∩ u * ◦ for all u ∈Mx},

where Mx is the set of all elements u of MX containing x. If we want
to emphasize the set X, we use the notation clXE for the closure of E.

Lemma 2.3. The mapping E → Ē in an ∩-structure space (X,MX) is
a closure operator on X and moreover has the following properties:
(a) For any collection {Ai}i∈I of subsets of X, ∪i∈IAi = ∪i∈IĀi.
(b) For all u ∈M:
i) u \ ◦ = u \ ◦.
ii) X \ u = X \ u.
iii) X \ (u \ ◦) = X \ (u \ ◦).

Proof. The proof is straightforward. �

Example. Let R be a ring. In the ∩-structure space (R, Id(R)), for any
nonzero ideal I, we have Ī = R if and only if I is an essential ideal of R.

Definition 2.4. If (X,MX) is an ∩-structure space and A ⊆ X, the
interior of A, i.e., A◦ is the set

A◦ = {x ∈ X : u ⊆ A for some u ∈Mx}.

It is easy to see that A◦ = {x ∈ X : 〈x〉 ⊆ A}.

Lemma 2.5. The operation A → A◦ in an ∩-structure space (X,MX)
is an interior operation and moreover has the following properties:
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(a) For any collection {Ai}i∈I of subsets of X, (∩i∈IAi)◦ = ∩i∈IA
◦
i .

(b) For all u ∈MX , u◦ = u.

Proof. The proof is straightforward. �

The previous lemmas show that the closure and interior have the same
properties as in the topological spaces. We denote the topologies induced
by closure and interior maps, by τ and τ◦, respectively. By the definition
and previous lemma, it is clear that MX is a base for the topology τ◦.

The next lemma gives us more information regarding τ and τ◦.

Lemma 2.6. Let (X,MX) be an ∩-structure space and A ⊆ X. Then
the folloeing statements hold.
(a) β◦ = {〈x〉 : x ∈ X} is a base (in fact the smallest base) for the
topology τ◦.
(b) The set β = {〈x〉 \ ◦ : x ∈ X \ ◦} ∪ ◦ is the smallest base for the
topology τ . Hence if ◦ 6= ∅, then τ◦ ( τ .
(c) x ∈ intτA if and only if x ∈ A and 〈x〉 \ ◦ ⊆ A.
(d) If ◦ ⊆ A, then intτ◦A = intτA.
(e) If A ∩ ◦ = ∅, then clτA = clτ◦A. Clearly if ◦ = ∅, then these two
toplogies coincide.
(f) clτA = clτ◦(A \ ◦) ∪A and intτA = intτ◦(A ∪ ◦) \ (◦ \A).

Proof. (a). Clearly β◦ is a base for the topology τ◦. Now, suppose that β
is a base for τ◦ and 〈x〉 ∈ β◦. Thus, B ∈ β exists such that x ∈ B ⊆ 〈x〉
and consequently 〈x〉 ⊆ B ⊆ 〈x〉. Therefore, 〈x〉 = B ∈ β.
(b). It is similar to (a).
(c). It is evident by part (b) and the fact that every point of ◦ is isolated
with respect to the topology τ .
(d). Since τ◦ ⊆ τ , clearly intτ◦A ⊆ intτA. Assume that x ∈ intτA. Then
by (c) we have 〈x〉 \ ◦ ⊆ A and so 〈x〉 = (〈x〉 \ ◦) ∪ ◦ ⊆ A. Therefore,
x ∈ intτ◦A.
(e). Since τ◦ ⊆ τ , clearly clτA ⊆ clτ◦A. Assume that x ∈ clτ◦A. Then,
clearly ∅ 6= 〈x〉∩A ⊆ A and consequently 〈x〉∩A * ◦. Hence, x ∈ clτA.
(f). By (e) we can write

clτA = clτ ((A \ ◦) ∪ (A ∩ ◦) = clτ (A \ ◦) ∪A = clτ◦(A \ ◦) ∪A.
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Also, by (d) and the fact that ◦\A is clopen with respect to the topology
τ , we can write

intτA = intτ ((A∪◦)\(◦\A)) = (intτ (A∪◦))\(◦\A) = (intτ◦(A∪◦))\(◦\A). �

Definition 2.7. Let (X,MX) be an ∩-structure space and Y ⊆ X. We
define:

MY = {u ∩ Y : u ∈MX}.

Obviously, MY is closed under arbitrary intersection. So (Y,MY ) is an
∩-structure space and we call it the subspace of (X,MX). It is clear that
if Y ∈MX then MY = {u ∈MX : u ⊆ Y }.
It goes without saying that (Y,MY ) is a topological subspace of (X,MX)
with respect to τ◦. The following proposition shows that this is true for
τ , too.

proposition 2.8. If (X,MX) is an ∩-structure space and A ⊆ Y ⊆ X,
then clYA = clXA ∩ Y .

Proof. It is easy to see that 〈y〉 ∩A * ◦Y if and only 〈y〉 ∩A * ◦X . By
this fact, one can easily see that clYA = clXA ∩ Y . �

Remark 2.9. Let R be a ring, in the ∩-structure space (R, Id(R)), for
a nonzero subset A of R, it is clear that A ∪ U(R) ⊆ Ā, where U(R)
is the set of all invertible elements of R. The natural question is, when
does the equality A ∪ U(R) = Ā hold. The next proposition is a partial
answer to this question.

proposition 2.10. Let R be a ring. In the ∩-structure space (R, Id(R)),
for any proper nonzero ideal I of R, I ∪ U(R) = Ī if and only if one of
the following conditions hold.
(a) Max(R) = {M◦} and I = M◦.
(b) Spec(R) = {M◦,M1}, where I = M◦ and M1 = Ann(I).
(c) Max(R) = {M◦}, I ⊆ Ann(I) = M◦ and I ⊆ P for each P ∈
Spec(R).

Proof. ⇒) First we notice that R \ U(R) = I ∪ Ann(I). Let I ⊆ M◦ ∈
Max(R), then M◦ ⊆ I ∪Ann(I), and so M◦ ⊆ Ann(I) or M◦ ⊆ I. Hence,
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M◦ = I or otherwise I ( M◦ = Ann(I). Now assume that I = M◦. In
this case we show that if (a) does not hold, then (b) hold. Suppose
that M1 is an arbitrary maximal ideal different from M◦. Clearly, M1 ⊆
R \ U(R) = I ∪ Ann(I) and so M1 = Ann(I). Now, we show that
Spec(R) = {M◦,M1}. To see this, suppose that P ∈ Spec(R). Then
M◦M1 = ◦ ⊆ P and so M◦ = P or M1 = P .
⇐) If (a) or (c) hold, then it is clear that I = I ∪ U(R). Otherwise,
suppose that Spec(R) = {M◦,M1}, I = M◦ and M1 = Ann(I). Now,
assume that x /∈ I ∪U(R), then it is sufficient to show that 〈x〉 ∩ I = ◦.
Let y = rx ∈ I = M◦. Clearly x ∈ M1 and so xM◦ = ◦. Therefore,
y2 = r2x2 = yrx ∈ M◦M1 = ◦ ⊆ M◦ and so r ∈ M◦. Consequently,
y = rx ∈M◦M1 = ◦. �

The following corollary is immediate.

Corollary 2.11. Let R be a ring, in the ∩-structure space (R, Id(R)),
let I be a proper ideal of R such that I $ Ann(I) (for example in the
reduced ring this condition holds). Then I ∪U(R) = Ī if and only if one
of the following conditions hold.
(a) Max(R) = {M1} and I = M◦.
(b) Spec(R) = {M◦,M1}, where I = M◦ and M1 = Ann(I).

proposition 2.12. Let X be a vector space over a field F , MX be the
set of all subspaces of X and ◦ ∈ A ⊆ X. Then the following statements
are equivalent:
(a) A = Ā.
(b) A is closed under scaler multiplication.
(c) A is the union of a family of subspaces of X.

Proof. (a) ⇒ (b). Let a ∈ A and x ∈ F . If a = 0, then we have nothing
to do. Otherwise a = 1

xxa. Hence, a ∈ 〈xa〉 ∩A and so xa ∈ Ā = A.
(b) ⇒ (c). It is clear, since in this case 〈a〉 = {xa : x ∈ F} ⊆ A and so
A = ∪a∈A〈a〉.
(c) ⇒ (a). Suppose that b ∈ Ā, then 〈b〉 ∩ (∪a∈A〈a〉) = 〈b〉 ∩ A * ◦ and
so there exists a ∈ A such that 〈b〉∩ 〈a〉 * ◦. Therefore, b ∈ 〈a〉 ⊆ A. �

The following corollary is immediate.

Corollary 2.13. Let X be a vector space over a field F , MX be the set
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of all subspaces of X and ◦ ∈ A ⊆ X. If τ is the topology on X induced
by the closure or interior map, then A is closed if and only if A ∈ τ .

3. Compactness and Connectedness

In this section we define essential concepts like compactness and con-
nectedness in (X,MX), and establish their elementary properties.

Definition 3.1. Let (X,MX) be an ∩-structure space, A ⊆ X and
K ⊆ MX . A is said to be K-compact (K-join compact) if each cover
(join cover) of elements of K for A, has a finite subcover (finite join
subcover). For simplicity, the MX-compact (MX-join compact) subset
of X is called compact (join compact).

The following examples show that these concepts need not imply each
other.

Example. (1). Let m1 ( m2 ( · · · be a strictly ascending chain of
sets. Assume that A = ∪∞i=1mi and X = m◦ = A ∪ {x}, for some
x /∈ A. If we consider MX = {mi : i = 0, 1, 2, · · · }, then (X,MX) is an
∩-structure space. In this ∩-structure space, according to the equality
m◦ = ∨∞i=1mi, it is easy to see that m◦ is compact while it is not join
compact.
(2). In the ∩-structure space (Z, Id(Z)), let A be the set of all prime
numbers. Then clearly, A is join compact but it is not compact.

proposition 3.2. Suppose (X,MX) is an ∩-structure space in which
MX is closed under directed unions. If A ⊆ X is compact, then it is
join compact.

Proof. Suppose U ⊆MX is a join cover of A. Set

V = {∨m∈Fm : F is a finite set of U}.

By assumption ∪n∈Vn ∈ MX and also we have ∪n∈Vn = ∨n∈Vn =
∨m∈Um. Since A is compact, there exists a finite set F◦ ⊆ V such
that A ⊆ ∪n∈F◦n. Clearly, there exists a finite subset F ⊆ U such that
A ⊆ ∪n∈F◦n ⊆ ∨n∈F◦n = ∨m∈Fm. �
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The previous proposition immediately shows that if X is an R-module
and MX is the set of all submodules of X, then every compact subset
of X is join compact.

proposition 3.3. Let (X,MX) be an ∩-structure space in which M is
closed under directed unions, and A ⊆ X. The following statements are
equivalent:
(a) A is join compact.
(b) A ⊆ ∨n

i=1〈ai〉, where {a1, . . . , an} is a finite subset of A.
Furthermore, if A ∈M then
(c) A is finitely generated.

Proof. The proof is straightforward. �

Corollary 3.4. Let (X,MX) be an ∩-structure space. The following
statements are equivalent:
(a) X is Noetherian (i.e., satisfies the ascending chain condition on
elements of MX).
(b) Each u ∈MX is join compact.
(c) Each u ∈MX is finitely generated.

Proof. It is enough to prove (a) ⇔ (c). The proof of this equivalence is
similar to what we have seen in algebra. �

Definition 3.5. Let (X,MX) be an ∩-structure space and u, v ∈MX . We
say that {u, v} is a separation of X if u is a complement of v. A sepa-
ration {u, v} of X is called trivial if one of them is zero. We say that X
is MX-connected (briefly, connected) if each separation of X is trivial.

For a subspace of an ∩-structure space, we can define different types of
connectivity as below.

Definition 3.6. Suppose (X,MX) is an ∩-structure space and Y ⊆
X. We say that Y is
i) MX-connected if whenever u, v ∈ MX and u ∧ v = ◦ such that Y ⊆
u ∨ v, then Y ⊆ u or Y ⊆ v;
ii)weakly MX-connected if for u, v ∈ MX with u ∧ v = ◦ such that
Y ⊆ u ∨ v, we have Y ∩ u ⊆ ◦ or Y ∩ v ⊆ ◦.

If X is a ring, MX is the set of all ideals and I is an ideal of X, then
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the previous definition is rewritten as follows:
i) I is MX -connected , if I ⊆ J ⊕K, where J and K are two ideals of
X, then I ⊆ J or I ⊆ K.
ii) I is Weakly MX -connected, if J and K are two ideals of X and
I ⊆ J ⊕K, then I ∩ J = ◦ or I ∩K = ◦.

The next proposition shows that the MX -connectedness implies the
weakly MX -connectedness.

proposition 3.7. Let (X,MX) be an ∩-structure space and Y ⊆ X. If
Y is MX-connected, then it is weakly MX-connected.

Proof. Assume that u, v ∈MX , u∧v = ◦ and Y ⊆ u∨v. By assumption
and without loss of generality, we may assume that Y ⊆ u. We show
that Y ∩ v ⊆ ◦. Let y ∈ Y ∩ v, then y ∈ u ∩ v = ◦. Thus Y ∩ v ⊆ ◦ and
the proof is complete. �

In the next examples, first we show that the converse of the previous
proposition is not true in general. This examples also show that con-
nected and weakly MX -connected are independent from each other, and
in addition, weakly MX -connected does not implies MX -connected.

Example. Let X be the vector space R2 over R and MX be the set of
all subspaces of X. Then we can easily see that every one dimensional
subspace is weakly MX -connected but it is not MX -connected.

Example. (1). Let X = Z, MX = Id(Z) and let I and J be two
incomparable ideals of Z. If Y = I∆J , then we have (Y ∩ I)∩ (Y ∩J) =
Y ∩ I ∩ J = ∅ and (Y ∩ I) ∩ (Y ∩ J) = I∆J = Y . Hence, Y is not
connected whereas it is MX -connected , for, Z is a uniform ring.
(2). In the ∩-structure space (Z30, Id(Z30), the ideal 〈4〉 ∈ M is not
indecomposable; i.e., 〈4〉 is connected whereas it is not even weakly
MX -connected.

Example. Let X be any set and Y , A, and B are subsets of X, such
that A∩B = ∅. In addition, suppose that A1 = Y ∩A and B1 = Y ∩B
are nonempty sets for which A1 ∪ B1 is a proper nonempty set. Set
MX = {∅, A1, B1, A1∪B1, A,B,X} and MY = {∅, A1, B1, A1∪B1, Y }.
Now, we show that Y is MY -connected whereas is not weakly MX -
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connected. We have Y ⊆ A ∨ B, A ∩ B = ∅, Y ∩ A = A1 6= ∅ and
Y ∩ B = B1 6= ∅, then Y is not weakly MX -connected. Now, let Y =
D ∨ C such that C ∩D = ∅. By the assumption and the definition of
MY , we see that D or C must be Y . Thus Y is MY -connected.

In the following two propositions we give some conditions such that the
weakly MX -connectedness implies the MX -connectedness.

proposition 3.8. Let (X,MX) be an ∩-structure space and Y ⊆ X. The
following statements are hold.
(a) If Y is weakly MX-connected and (X\Y )∪◦ includes no any nonzero
element of MX , then Y is MX-connected.
(b) If Y ∈MX is weakly MX-connected, then it is MX-connected.
(c) If Y ∈MX is MX-connected, then Y is connected.

Proof. (a). Assume that u, v ∈ MX , (u ∩ Y ) ∩ (v ∩ Y ) = ◦Y and
Y = (u ∩ Y ) ∨ (v ∩ Y ). In this case it is clear that Y ⊆ u ∨ v and
u ∩ v ⊆ (X \ Y ) ∪ ◦. Hence Y ⊆ u ∨ v and u ∩ v ⊆ ◦. Therefore, by
assumption Y ∩ u ⊆ ◦ or Y ∩ v ⊆ ◦.
(b). Assume that u, v ⊆ Y , u∧v = ◦ and Y = u∨v. Then by assumption
Y ∩ u = u ⊆ ◦ or Y ∩ v = v ⊆ ◦.
(c). Let Y = u∨v, where u, v ∈MX are two subsets of Y and u∧v = ◦.
Since Y is MX -connected, we have Y ⊆ u or Y ⊆ v. Therefore, Y = u

or Y = v and consequently Y is connected. �

proposition 3.9. Let (X,MX) be a distributive ∩-structure space and
let Y ∈MX . If Y is a connected, then Y is MX-connected subspace.

Proof. Suppose that Y ⊆ m∨n and m∧n = m∩n = ◦. In this case by
the distributive assumption we have: Y ∩(m∨n) = (Y ∩m)∨(Y ∩n) = Y .
Since Y is connected, we must have Y ∩m = Y or Y ∩ n = n. Hence
Y ⊆ m or Y ⊆ n. Thus, Y is a MX -connected subspace. �

proposition 3.10. Let (X,MX) be an ∩-structure space and Y ⊆
X. Then the following statements are hold.
(a) If Y is weakly MX-connected and Y ⊆ B ⊆ Ȳ , then B is weakly
MX-connected.
(b) If for each λ ∈ Λ, Yλ ⊆ X is MX-connected and ∩λ∈ΛYλ * ◦, then
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∪λ∈ΛYλ is MX-connected.
(c) If Y ⊆ X is MX-connected, then 〈Y 〉 is MX-connected.
(d) If for each λ ∈ Λ, Yλ ⊆ X is MX-connected and ∩λ∈ΛYλ * ◦, then
∨λ∈ΛYλ is MX-connected.

Proof. (a). Suppose that B ⊆ m∨n, where m,n ∈MX and m∨n = ◦.
By assumption, Y ∩m ⊆ ◦ or Y ∩ n ⊆ ◦. This is equivalent to the fact
that B ∩m ⊆ ◦ or B ∩ n ⊆ ◦.
(b). Let ∪λ∈ΛYλ ⊆ m ∨ n such that m,n ∈ MX and m ∨ n = ◦. By
hypothesis, for every λ ∈ Λ we have Yλ ⊆ m or Yλ ⊆ n. If, on the
contrary, there exist λ1, λ2 ∈ Λ such that Yλ1 ⊆ m and Yλ2 ⊆ n, then
◦ 6= Yλ1∩Yλ2 ⊆ m∩n = ◦ and this is a contradiction. Therefore, Yλ ⊆ m

for every λ ∈ Λ or Yλ ⊆ n for every λ ∈ Λ and consequently ∪λ∈ΛYλ ⊆ m

or ∪λ∈ΛYλ ⊆ n.
(c). Suppose that 〈Y 〉 ⊆ m ∨ n such that m,n ∈ MX and m ∨ n =
◦. Hence, by hypothesis, Y ⊆ m or Y ⊆ n and consequently 〈Y 〉 ⊆ m or
〈Y 〉 ⊆ n. �

proposition 3.11. In the ∩-structure space (R, Id(R)), let I be an ideal
such that any element a ∈ I has a root; i.e., there exists a natural number
n > 1 and b ∈ I such that bn = a. Then the three kinds of connectedness
for I are equivalent.

Proof. By part (b), (c) of Proposition 3.8 and by proposition 3.12, it is
enough to show that if I is MX -connected, then I is connected. To see
this, suppose that J,H are two ideals where J ∩H = ◦ and I ⊆ J ∨H =
J + H. It suffices to show that I = I ∩ J + I ∩ H. Clearly, we have
I ∩ J + I ∩H ⊆ I. Now, assume that a ∈ I. Then, there exist b ∈ I and
n > 1 such that bn = a. By hypothesis, there exist c ∈ J and d ∈ H for
which b = c+ d. Hence, a = bbn−1 = cbn−1 + dbn−1 ∈ I ∩ J + I ∩H. �

proposition 3.12. Let X be a ring, MX be the set of all semiprime
ideals of X and I ∈ MX . Then the three kinds of connectedness for I
are equivalent.

Proof. Similar to previus proposition, it is enough to show that for every
J,H ∈MX with J∩H = ◦, if I ⊆ J+H, then I ⊆ I∩J+I∩H. Assuming
a ∈ I, there exist b ∈ J and c ∈ H for which a = b + c. It suffices to
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show that b ∈ I ∩ J and c ∈ I ∩ H. Clearly, ab = b2 + bc = b2 and so
b2 ∈ I ∩ J , hence b ∈ I ∩ J . The proof of c ∈ I ∩H is similar. Therefore
a ∈ I ∩ J + I ∩H, and the proof is complete. �
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