Journal of Mathematical Extension
Vol. 15, No. 2, (2021) (8)1-14
URL: https://doi.org/10.30495/JME.2021.1248
ISSN: 1735-8299
Original Research Paper

Dominions and Zigzag Theorem for Γ-Semigroups

W. Ashraf
Aligarh Muslim University

S. A. Ahangar
Central University of Kashmir

A. Salam*
Aligarh Muslim University
N. M. Khan
Aligarh Muslim University

Abstract

Dominions have been studied from different perspectives, however their major application lies to study the closure property for monoids. The most useful characterization of semigroup dominions was provided by the famous Isbell's Zigzag Theorem. In this paper, we introduce the dominion of a Γ-semigroup and give the analogue of Isbell's zigzag theorem for Γ-semigroups.

AMS Subject Classification: 20M10; 18B40
Keywords and Phrases: Dominion, Zigzag equations, Γ-semigroup

1 Introduction

Sen [6] defined the concept of a Γ-semigroup as a generalization of a semigroup. The investigation on Γ-semigroups was done by several math-

[^0]ematicians which are parallel to the results in semigroup theory; for example one may see $[5,8,9]$. A generalization of S-act to the Γ-act over a Γ-semigroup can be found in [7]. Moreover, some basic properties of Γ-acts can be found in [2]. Dominions and zigzags were first studied in 1965 by Isbell [4] in connection with epimorphisms. It was again revived in 1980's and was studied extensively by Hall, Higgins, Khan and others resulting in the appearance of various interesting research articles (see for example [3] for all these references).

In this paper, we define dominion of a Γ-semigroup and generalize the concepts of bi-systems and tensor products of semigroups to Γ-semigroups and, later on, give the characterization of dominion of a Γ-semigroup.

Let S and Γ be any non-empty sets. Then S is called a Γ-semigroup if there exists a mapping from $S \times \Gamma \times S$ to S which maps (a, α, b) to $a \alpha b$ satisfying the condition $(a \alpha b) \gamma c=a \alpha(b \gamma c)$ for all $a, b, c \in S$ and for all $\alpha, \gamma \in \Gamma$. Let S_{1} and S_{2} be a Γ_{1}-semigroup and a Γ_{2}-semigroup respectively. A pair of mappings $f_{1}: S_{1} \rightarrow S_{2}$ and $f_{2}: \Gamma_{1} \rightarrow \Gamma_{2}$ is said to be a homomorphism from $\left(S_{1}, \Gamma_{1}\right)$ to $\left(S_{2}, \Gamma_{2}\right)$ if $\left(s_{1} \gamma s_{2}\right) f_{1}=$ $\left(\left(s_{1}\right) f_{1}\right)\left((\gamma) f_{2}\right)\left(\left(s_{2}\right) f_{1}\right)$ for all $s_{1}, s_{2} \in S_{1}$ and $\gamma \in \Gamma_{1}$. A non-empty subset U of a Γ-semigroup S is called a Γ-subsemigroup of S if $U \Gamma U \subseteq U$. A Γ-semigroup S is called a Γ-monoid if there exists $1 \in S$ such that $1 \gamma s=s=s \gamma 1$ for all $s \in S$ and $\gamma \in \Gamma$. Similarly one may define a Γ-submonoid. Let U be a Γ-subsemigroup of a Γ-semigroup S. Then we say that U dominates an element d of S if for every Γ-semigroup T and for all homomorphisms $\alpha, \beta: S \rightarrow T$ and $\alpha^{\prime}, \beta^{\prime}: \Gamma \rightarrow \Gamma^{\prime}$ such that $u \alpha=u \beta$ and $\gamma \alpha^{\prime}=\gamma \beta^{\prime}$ for all $u \in U$, implies $d \alpha=d \beta$. The set of all elements of S dominated by U is called the dominion of U in S and is denoted by Γ - $\operatorname{Dom}(U, S)$. It may easily be seen that Γ - $\operatorname{Dom}(U, S)$ is a Γ-subsemigroup of S containing U.
The semigroup theoretic notations and conventions of Clifford and Preston [1] and Howie [3] will be used throughout without explicit mention.

2 Bi -systems and tensor products on Γ-semigroups

In this section, we generalize the concepts of bi-systems and tensor product of semigroups (see [3]) to Γ-semigroups.
Definition 2.1. Let S be a Γ-monoid and X be any non-empty set. Then X is said to be a right S-system, denoted by Γ_{S}-system, if there exists a map $X \times \Gamma \times S \rightarrow X$ defined by $(x, \gamma, s) \longmapsto x \gamma s$ such that
(i) $x \gamma_{1}\left(s \gamma_{2} t\right)=\left(x \gamma_{1} s\right) \gamma_{2} t \quad\left(\forall x \in X, \forall \gamma_{1}, \gamma_{2} \in \Gamma, \forall s, t \in S\right)$; and
(ii) $x \gamma_{1} 1=x$.

Dually one may define a left Γ_{S}-system.
Definition 2.2. Let S be a Γ^{\prime}-semigroup, T a $\Gamma^{\prime \prime}$-semigroup and X a non-empty set. Then X is said to be a $\left(\Gamma_{S}^{\prime}, \Gamma_{T}^{\prime \prime}\right)$-bisystem if X is both a left $\Gamma_{S^{\prime}}^{\prime}$-system as well as a right $\Gamma_{T}^{\prime \prime}$-system and

$$
s \gamma^{\prime}\left(x \gamma^{\prime \prime} t\right)=\left(s \gamma^{\prime} x\right) \gamma^{\prime \prime} t\left(\forall x \in X, \gamma^{\prime} \in \Gamma^{\prime}, \gamma^{\prime \prime} \in \Gamma^{\prime \prime}, \forall s \in S, t \in T\right) .
$$

Note 1. If X is a $\left(\Gamma_{S}^{\prime}, \Gamma_{T}^{\prime \prime}\right)$-bisystem, then we denote it as $X \in \Gamma_{S}^{\prime}$-ENS$\Gamma_{T}^{\prime \prime}$.
Definition 2.3. Let X and Y be left Γ_{S}-systems. Then a map
$\phi: X \longrightarrow Y$ satisfying $(s \gamma x) \phi=s \gamma(x \phi)(\forall x \in X, s \in S, \gamma \in \Gamma)$ is called a Γ_{S}-map from X to Y.
Definition 2.4. A relation ρ on a left Γ_{S}-system X is called a congruence if ρ is an equivalence relation on X such that $x \rho y \Rightarrow(s \gamma x) \rho(s \gamma y)$ for all $x, y \in X, \gamma \in \Gamma$ and $s \in S$.

Let $X / \rho=\{x \rho \mid x \in X\}$. Then it can be easily verified that X / ρ is a left Γ_{S}-system with the action defined by $(s, \gamma,(x \rho)) \rightarrow(s \gamma x) \rho$.

For any left $\Gamma_{S^{\prime}}^{\prime}$-system X and right $\Gamma_{T}^{\prime \prime}$-system Y, it may be easily checked that $Z=X \times Y$ is a $\left(\Gamma_{S}^{\prime}, \Gamma_{T}^{\prime \prime}\right)$-bisystem with respect to actions defined by $\left(s, \gamma^{\prime},(x, y)\right) \rightarrow\left(s \gamma^{\prime} x, y\right)$ and $\left((x, y), \gamma^{\prime \prime}, t\right) \rightarrow\left(x, y \gamma^{\prime \prime} t\right)$ $\left(\forall(x, y) \in Z, \gamma^{\prime} \in \Gamma^{\prime}, \gamma^{\prime \prime} \in \Gamma^{\prime \prime}, s \in S, t \in T\right)$.
Definition 2.5. Let $A \in \Gamma_{T^{\prime}}^{\prime}$-ENS- $\Gamma_{S}^{\prime \prime}, B \in \Gamma_{S}^{\prime \prime}$-ENS- $\Gamma_{U}^{\prime \prime \prime}$, and $C \in \Gamma_{T^{-}}^{\prime}$ ENS- $\Gamma_{U}^{\prime \prime \prime}$. A map $\beta: A \times B \longrightarrow C$ is said to be a $\left(\Gamma_{T}^{\prime}, \Gamma_{U}^{\prime \prime \prime}\right)$ map if for all $a \in A, b \in B, \gamma^{\prime} \in \Gamma^{\prime}, \gamma^{\prime \prime \prime} \in \Gamma^{\prime \prime \prime}, t \in T$ and $u \in U$, we have

$$
\left(t \gamma^{\prime}(a, b)\right) \beta=t \gamma^{\prime}((a, b)) \beta \text { and }\left((a, b) \gamma^{\prime \prime \prime} u\right) \beta=(a, b) \beta \gamma^{\prime \prime \prime} u .
$$

Definition 2.6. A $\left(\Gamma_{T}^{\prime}, \Gamma_{U}^{\prime \prime \prime}\right)$ map $\beta: A \times B \longrightarrow C$ is called a bimap if

$$
\left(a \gamma^{\prime \prime} s, b\right) \beta=\left(a, s \gamma_{1}^{\prime \prime} b\right) \beta\left(\forall a \in A, b \in B, \gamma^{\prime \prime}, \gamma_{1}^{\prime \prime} \in \Gamma^{\prime \prime}\right)
$$

Definition 2.7. A pair (ρ, ψ) consisting of a $\left(\Gamma_{T}^{\prime}, \Gamma_{U}^{\prime \prime \prime}\right)$-bisystem P and a bimap $\psi: A \times B \longrightarrow P$ will be called a tensor product of A and B if for every $\left(\Gamma_{T}^{\prime}, \Gamma_{U}^{\prime \prime \prime}\right)$-bisystem C and every bimap $\beta: A \times B \longrightarrow C$, there exists a unique $\left(\Gamma_{T}^{\prime}, \Gamma_{U}^{\prime \prime \prime}\right)$ map $\tilde{\beta}: P \longrightarrow C$ such that the diagram

commutes.
Moreover, when $C=P$ and $\beta=\psi$, the unique $\tilde{\beta}$ in the above diagram is ι_{P} (the identity map on P)

Lemma 2.8. If there exists a tensor product of A and B over S, then it is unique up to isomophism.

Proof. The proof is similar to the proof of 8.17 [3].
Define $A \otimes B=A \times B / \tau$, where τ is the equivance relation on $A \times B$ generated by the relation

$$
T=\{(a \gamma s, b),(a, s \gamma b) \mid a \in A, b \in B, s \in S, \gamma \in \Gamma\}
$$

We denote the τ-class $(a, b) \tau$ of (a, b) by $a \otimes_{\Gamma_{S}} b$.
Note 2. $a \gamma s \otimes_{\Gamma_{S}} b=a \otimes_{\Gamma_{S}} s \gamma b$ for all $a \in A, b \in B, s \in S$ and $\gamma \in \Gamma$.

Let \mathcal{C} be the class of all γ-semigroups and let $\mathcal{D}=\left\{S \in \mathcal{C}: a \gamma_{1} b=\right.$ $c \gamma_{2} d \Longrightarrow \gamma_{1}=\gamma_{2}$ for all $a, b, c, d \in S$ and $\left.\forall \gamma_{1}, \gamma_{2} \in \Gamma\right\}$.
Throughout rest of the paper, we prove results for the class \mathcal{D} of γ semigroups without further mention.
Proposition 2.9. Let $a \otimes_{\Gamma_{S}} b, c \otimes_{\Gamma_{S}} d \in A \otimes_{\Gamma_{S}} B$. Then $a \otimes b=c \otimes d$ iff there exist $a_{1}, a_{2}, \cdots a_{n-1} \in A, b_{1}, b_{2}, \cdots b_{n-1}, b_{n} \in B, s_{1}, s_{2}, \cdots s_{n-1}, s_{n}, t_{1}$, $t_{2}, \cdots t_{n-1} \in S$ such that:

$$
\begin{array}{rlrl}
a & =a_{1} \gamma s_{1}, & s_{1} \gamma b & =t_{1} \gamma b_{1}, \\
a_{1} \gamma t_{1} & =a_{2} \gamma s_{2}, & s_{2} \gamma b_{1} & =t_{2} \gamma b_{2}, \\
a_{2} \gamma t_{2} & =a_{3} \gamma s_{3}, & s_{3} \gamma b_{2} & =t_{2} \gamma b_{3}, \\
\vdots & & \\
a_{n-1} \gamma t_{n-1} & =c \gamma s_{n}, & s_{n} \gamma b_{n-1} & =d .
\end{array}
$$

Proof.

$$
\begin{aligned}
a \otimes_{\Gamma_{S}} b & =a_{1} \gamma s_{1} \otimes b \\
& =a_{1} \otimes s_{1} \gamma b \\
& =a_{1} \otimes t_{1} \gamma b_{1} \\
& =a_{1} \gamma t_{1} \otimes b_{1} \\
& =a_{2} \gamma s_{2} \otimes b_{1} \\
& =a_{2} \otimes s_{2} \gamma b_{1} \\
& =a_{2} \otimes t_{2} \gamma b_{2} \\
& \vdots \\
& =a_{n-1} \otimes t_{n-1} \gamma b_{n-1} \\
& =a_{n-1} \gamma t_{n-1} \otimes b_{n-1} \\
& =c \gamma s_{n} \otimes b_{n-1} \\
& =c \otimes s_{n} \gamma b_{n-1} \\
& =c \otimes_{\Gamma_{S}} d .
\end{aligned}
$$

Conversely, suppose that $a \otimes b=c \otimes d$. Then by Theorem 1.4.10 [3],

$$
(a, b)=\left(p_{1}, q_{1}\right) \rightarrow\left(p_{2}, q_{2}\right) \rightarrow \cdots \rightarrow\left(p_{n-1}, q_{n-1}\right) \rightarrow\left(p_{n}, q_{n}\right)=(c, d),
$$

where $\left(\left(p_{i-1}, q_{i-1}\right),\left(p_{i+1}, q_{i+1}\right)\right) \in T \cup T^{-1}$. We can assume that the sequence begins and ends with right move $(a, b) \rightarrow(a \gamma b)$.

$$
\begin{aligned}
(a, b)=\left(p_{1}, q_{1}\right) & =\left(a_{1} \gamma s_{1}, b\right) \rightarrow\left(a_{1}, s_{1} \gamma b\right), \\
& =\left(a_{1}, t_{1} \gamma b_{1}\right) \rightarrow\left(a_{1} \gamma t_{1}, b_{1}\right), \\
& =\left(a_{2} \gamma s_{2}, b_{1}\right) \rightarrow\left(a_{2}, s_{2} \gamma b_{1}\right), \\
& =\left(a_{2}, t_{2} \gamma b_{2}\right) \rightarrow\left(a_{2} \gamma t_{2}, b_{2}\right), \\
& =\left(a_{3} \gamma s_{3}, b_{2}\right) \rightarrow\left(a_{2}, s_{3} \gamma b_{2}\right), \\
& =\left(a_{3}, t_{3} \gamma b_{3}\right) \rightarrow\left(a_{3} \gamma t_{3}, b_{3}\right), \\
& \vdots \\
& =\left(a_{n-1}, t_{n-1} \gamma b_{n-1}\right) \rightarrow\left(a_{n-1} \gamma t_{n-1}, b_{n-1}\right), \\
& =\left(c \gamma s_{n}, b_{n-1}\right) \rightarrow\left(c, s_{n} \gamma b_{n-1}\right)=(c, d) .
\end{aligned}
$$

This gives

$$
\begin{array}{rlrl}
a & =a_{1} \gamma s_{1}, & s_{1} \gamma b & =t_{1} \gamma b_{1}, \\
a_{1} \gamma t_{1} & =a_{2} \gamma s_{2}, & s_{2} \gamma b_{1} & =t_{2} \gamma b_{2}, \\
a_{2} \gamma t_{2} & =a_{3} \gamma s_{3}, & s_{3} \gamma b_{2} & =t_{2} \gamma b_{3}, \\
\vdots & & \\
a_{n-1} \gamma t_{n-1} & =c \gamma s_{n}, & s_{n} \gamma b_{n-1} & =d,
\end{array}
$$

as required.
Proposition 2.10. The equivalence relation τ defined on $A \times B$ is a $\left(\Gamma_{S}, \Gamma_{S}\right)$-congruence and $t \gamma(a \otimes b)=(t \gamma a) \otimes b,(a \otimes b) \gamma a=a \otimes(b \gamma a)$.

Proof. Suppose that $(a, b) \tau(c, d)$. So $(a, b) \tau=(c, d) \tau$. It follows that $a \otimes b=c \otimes d$. Then, by Proposition 2.9, we have

$$
t \gamma(a \otimes b)=(t \gamma a) \otimes b \text { and }(a \otimes b) \gamma a=a \otimes(b \gamma a)
$$

for all $s, t \in S, a, c \in A$ and $b, d \in B$. This implies that

$$
\begin{aligned}
(t \gamma a) \otimes b & =(t \gamma c) \otimes d \\
\Rightarrow((t \gamma a), b) \tau & =((t \gamma c), d) \tau \\
\Rightarrow(t \gamma(a, b)) \tau & =(t \gamma(c, d)) \tau .
\end{aligned}
$$

Similarly

$$
((a, b) \gamma s) \tau=((c, d) \gamma s) \tau
$$

So τ is a congruence.
Proposition 2.11. Let $A, B \in \Gamma_{S}-E N S-\Gamma_{S}$. Then $\left(A \otimes_{\Gamma_{S}} B, \tau^{\#}\right)$ is a tensor product of A and B over S.
Proof. We have $\tau^{\#}: A \times B \rightarrow(A \times B) / \tau=A \otimes_{\Gamma_{S}} B$ defined by $(a, b) \tau^{\#}=(a, b) \tau=a \otimes_{\Gamma_{S}} b$. Now

$$
\begin{aligned}
(a, b) \tau^{\#} & =(s \gamma a, b) \tau^{\#} \\
& =(s \gamma a) \otimes b \\
& =s \gamma(a \otimes b) \\
& =s \gamma(a, b) \tau^{\#}
\end{aligned}
$$

and

$$
\begin{aligned}
(a, b) \gamma s \tau^{\#} & =(a, b \gamma s) \tau^{\#} \\
& =a \otimes(b \gamma s) \\
& =(a \otimes b) \gamma s \\
& =(a, b) \tau^{\#} \gamma s .
\end{aligned}
$$

Therefore $\tau^{\#}$ is a $\left(\Gamma_{S}, \Gamma_{S}\right)$-map. Again

$$
\begin{aligned}
(a \gamma s, b) \tau^{\#} & =a \gamma s \otimes b \\
& =a \otimes s \gamma b \\
& =(a, s \gamma b) \tau^{\#}
\end{aligned}
$$

Therefore $\tau^{\#}$ is a bimap. Now, let $C \in \Gamma_{S}$-ENS- Γ_{S} and let $\beta: A \times B \longrightarrow$ C be a bimap. Define $\tilde{\beta}: A \otimes_{\Gamma_{S}} B \longrightarrow C$ by

$$
\begin{equation*}
(a \otimes b) \tilde{\beta}=(a, b) \beta . \tag{1}
\end{equation*}
$$

By using Proposition 2.9, we can easily verify that $\tilde{\beta}$ is well defined and the diagram

commutes.
Since $\left((a, b) \tau^{\#}\right)=a \otimes b$, from (1), we have

$$
\left((a, b) \tau^{\#}\right) \tilde{\beta}=(a, b) \beta \Rightarrow \tilde{\beta}=\beta
$$

Thus $\left(A \otimes_{\Gamma_{S}} B, \tau^{\#}\right)$ is a tensor product.

3 Isbell zigzag theorem for Γ-semigroups

In [4], Isbell gave the characterization of semigroup dominion. In the next theorem, we generalize the Isbell zigzag theorem for Γ-semigroups and give the charaterization of Γ-semigroup dominion. Infact we prove the following theorem:

Theorem 3.1. Let U be a Γ-submonoid of $a \Gamma$-monoid S. Then $d \in \Gamma$ $\operatorname{Dom}(U, S)$ iff $d \in U$ or there exists a series of factorization for d as follows:

$$
\begin{aligned}
d=a_{0} \gamma t_{1}=y_{1} \gamma a_{1} \gamma t_{1} & =y_{1} \gamma a_{2} \gamma t_{2}=y_{2} \gamma a_{3} \gamma t_{2} \\
& =\cdots=y_{m} \gamma a_{2 m-1} \gamma t_{m}=y_{m} \gamma a_{2 m}
\end{aligned}
$$

Where $m \geq 1, a_{i} \in U(i=0,1,2, \ldots, 2 m), y_{i}, t_{i} \in S(i=1,2, \ldots, m)$, $\gamma \in \Gamma$ and

$$
\begin{aligned}
a_{0} & =y_{1} \gamma a_{1}, & a_{2 m-1} \gamma t_{m} & =a_{2 m} \\
a_{2 i-1} \gamma t_{i} & =a_{2 i} \gamma t_{i+1}, & y_{i} \gamma a_{2 i} & =y_{i+1} \gamma a_{2 i+1}(1 \leq i \leq m-1)
\end{aligned}
$$

Such a series of factorization is called a zigzag in S over U with value d, length m and spine $a_{0}, a_{1}, a_{2}, \ldots, a_{2 m}$.

To prove the above theorem, we first prove the following lemma.
Lemma 3.2. Let U be $a \Gamma$-submonoid of $a \Gamma$-monoid S. Then $d \in \Gamma$ $\operatorname{Dom}(U, S)$ iff $d \otimes_{\Gamma} 1=1 \otimes_{\Gamma} d$ in $S \otimes_{\Gamma_{U}} S$.

Proof. Suppose $d \otimes_{\Gamma} 1=1 \otimes_{\Gamma} d$. Let T be a Γ^{\prime}-monoid and $\alpha, \beta: S \longrightarrow T$ and $\alpha^{\prime}, \beta^{\prime}: \Gamma \longrightarrow \Gamma^{\prime}$ such that $u \alpha=u \beta \forall u \in U$ and $(\gamma) \alpha^{\prime}=(\gamma) \beta^{\prime}(\forall \gamma \in \Gamma)$. We show that $d \alpha=d \beta$. First, we show that T is $\left(\Gamma_{U}, \Gamma_{U}\right)$-bisystem. Define:

$$
u \gamma^{\prime} t=(u \alpha) \gamma^{\prime} t \text { and } t \gamma^{\prime} u=t \gamma^{\prime}(u \beta)
$$

and $\psi: S \times S \longrightarrow T$ by $\left(s, s^{\prime}\right) \psi=(s \alpha) \gamma^{\prime}\left(s^{\prime} \beta\right)$. Then ψ is a $\left(\Gamma_{U}, \Gamma_{U}\right)$ map and is also a bimap. Now

$$
\begin{aligned}
\left(u \gamma\left(s, s^{\prime}\right)\right) \psi & =\left(u \gamma s, s^{\prime}\right) \psi \\
& =(u \gamma s) \alpha \gamma^{\prime}\left(s^{\prime}\right) \beta \\
& =(u) \alpha(\gamma) \alpha^{\prime}(s) \alpha \gamma^{\prime}\left(s^{\prime}\right) \beta \\
& =u \gamma_{1}^{\prime}(s \alpha) \gamma^{\prime}\left(s^{\prime}\right) \beta \\
& =u \gamma_{1}^{\prime}\left(s, s^{\prime}\right) \psi .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \left(\left(s, s^{\prime}\right) \gamma a\right) \psi=\left(s, s^{\prime}\right) \psi \gamma^{\prime} u \text { where } \gamma^{\prime} \alpha^{\prime}=\gamma_{1}^{\prime} . \\
& \begin{aligned}
\left(s \gamma u, s^{\prime}\right) \psi & =(s \gamma u) \alpha \gamma^{\prime} s^{\prime} \beta \\
& =(s \alpha) \gamma_{1}^{\prime}(u \alpha) \gamma^{\prime} s^{\prime} \beta \\
& =(s \alpha) \gamma_{1}^{\prime}(u \beta) \gamma^{\prime} s^{\prime} \beta \\
& =(s \alpha) \gamma_{1}^{\prime}\left(u \gamma s^{\prime}\right) \beta \\
& =\left(s, u \gamma s^{\prime}\right) \psi .
\end{aligned}
\end{aligned}
$$

Therefore (T, ψ) is a tensor product. But $\left(S \otimes_{\Gamma} S, \tau^{\psi}\right)$ is also a tensor product. Therefore, by Proposition 2.11, there exists a map $\tilde{\psi}: S \otimes_{\Gamma}$ $S \longrightarrow T$ such that

$$
\begin{equation*}
\left(s \otimes s^{\prime}\right) \tilde{\psi}=\left(s, s^{\prime}\right) \psi=(s \alpha) \gamma^{\prime}\left(s^{\prime} \beta\right)\left(\forall s \otimes s^{\prime} \in S \otimes_{\Gamma} S\right) \tag{2}
\end{equation*}
$$

Now

$$
\begin{aligned}
d \alpha & =(d \gamma 1) \alpha \\
& =(d \alpha)\left(\gamma \alpha^{\prime}\right)(1 \alpha) \\
& =(d \alpha)\left(\gamma \alpha^{\prime}\right)(1 \beta) \\
& =(d \alpha) \gamma^{\prime}(1 \alpha) \\
& =(d \otimes 1) \tilde{\psi} \quad(\text { by } 3) \\
& =(1 \otimes d) \tilde{\psi} \\
& =(1 \alpha) \gamma^{\prime} d \beta \\
& =d \beta
\end{aligned}
$$

Therefore $d \alpha=d \beta \Rightarrow d \in \Gamma-\operatorname{Dom}(U, S)$.
Conversely, suppose that $d \in \Gamma-\operatorname{Dom}(U, S)$. Let $A=S \otimes_{\Gamma_{U}} S$. Then A is a $\left(\Gamma_{S}, \Gamma_{S}\right)$-bisystem as

$$
s \gamma(x \otimes y)=(s \gamma x) \otimes y \text { and }(x \otimes y) \gamma s=x \otimes(y \gamma s) .
$$

Let $(Z(A),+)$ be a free abelian group on A i.e.

$$
Z(A)=\left\{\Sigma z_{i} a_{i}: z_{i} \in Z, a_{i} \in A\right\} .
$$

Then $Z(A)$ is also a (Γ_{S}, Γ_{S})-bisystem with respect to the actions defined by

$$
\left(s, \gamma,\left(\Sigma z_{i} a_{i}\right)\right) \rightarrow \Sigma z_{i}\left(s \gamma a_{i}\right) \text { and }\left(\left(\Sigma z_{i} a_{i}\right), \gamma, s\right) \rightarrow \Sigma z_{i}\left(a_{i} \gamma s\right) .
$$

Now we show that $S \times Z(A)$ is a Γ-semigroup. Define a map $\phi:(S \times$ $Z(A)) \times \Gamma \times(S \times Z(A)) \longrightarrow S \times Z(A)$ by $((p, x) \gamma(q, y)) \phi=(p \gamma y, x \gamma q+$ $p \gamma y)(\forall p, q \in S, x, y \in Z(A), \gamma \in \Gamma)$. Then $S \times Z(A)$ is a Γ-semigroup.

Define $\alpha: S \longrightarrow S \times Z(A)$ by $s \alpha=(s, 0)$ and $\beta: S \longrightarrow S \times Z(A)$ by $s \beta=(s, s \otimes 1-1 \otimes s)$. Since $u \otimes 1=1 \otimes u$, therefore

$$
u \alpha=(u, 0)=(1 u, u \otimes 1-1 \otimes u)=u \beta(\forall u \in U) .
$$

This implies that $d \alpha=d \beta$ (since $d \in \Gamma$ - $\operatorname{Dom}(U, S)$). So

$$
(d, 0)=(d, d \otimes 1-1 \otimes d) \Rightarrow d \otimes 1=1 \otimes d
$$

To complete the proof of the theorem, take any $d \in \Gamma$ - $\operatorname{Dom}(U, S)$. By above lemma $d \otimes 1=1 \otimes d$. Now, by Proposition 2.9 , the proof of the zigzag theorem is completed.

Now we show that Isbell's zigzag theorem is also aplicable to Γ semigroups as well as to Γ-monoids.

Theorem 3.3. Let U be a Γ-subsemigroup of $a \Gamma$-semigroup S and let $d \in S$. Then $d \in \Gamma-\operatorname{Dom}(U, S)$ if and only if $d \in U$ or there exists a series of factorizations of d as follows:

$$
\begin{aligned}
d=a_{0} \gamma t_{1}=y_{1} \gamma a_{1} \gamma t_{1} & =y_{1} \gamma a_{2} \gamma t_{2}=y_{2} \gamma a_{3} \gamma t_{2} \\
& =\cdots=y_{m} \gamma a_{2 m-1} \gamma t_{m}=y_{m} \gamma a_{2 m}
\end{aligned}
$$

Where $m \geq 1, a_{i} \in U(i=0,1, \ldots, 2 m), y_{i}, t_{i} \in S(i=1,2, \ldots, m)$ and

$$
\begin{aligned}
a_{0} & =y_{1} \gamma a_{1}, & a_{2 m-1} \gamma t_{m} & =a_{2 m} \\
a_{2 i-1} \gamma t_{i} & =a_{2 i} \gamma t_{i+1}, & y_{i} \gamma a_{2 i} & =y_{i+1} \gamma a_{2 i+1}
\end{aligned} \quad(1 \leq i \leq m-1) .
$$

Such a series of factorization is called a zigzag in S over U with value d, length m and spine $a_{0}, a_{1}, \ldots, a_{2 m}$.

Proof. We begin by adjoining an identity element 1 to the Γ-semigroup S whether or not it already has one. If we call the resultant Γ-monoid and write $U \cup 1$ as U^{\star}, then we can easily verify that an element $d \in S \backslash U$ is in Γ - $\operatorname{Dom}(U, S)$ iff $d \in \Gamma-\operatorname{Dom}\left(U^{\star}, S^{\star}\right)$ and, hence, if $d \otimes 1=1 \otimes d$ in the tensor product of $S^{\star} \otimes S^{\star}$. So to obtain Isbell's theorem, we simply observe that the zigzag in which the element 1 appears can be shorten. For example, if $a_{2 i}=1$, then the equalities

$$
\begin{array}{lr}
a_{2 i-3} \gamma t_{i-1}=a_{2 i-2} \gamma t_{i}, & y_{i-1} \gamma a_{2 i-2}=y_{i} \gamma a_{2 i-1} \\
a_{2 i-1} \gamma t_{i+1}=a_{2 i} \gamma t_{i+1}, & y_{i} \gamma a_{2 i}=y_{i+1} \gamma a_{2 i+1} \\
a_{2 i+1} \gamma t_{i+1}=a_{2 i+2} \gamma t_{i+2}, & y_{i+1} \gamma a_{2 i+2}=y_{i+2} \gamma a_{2 i+3}
\end{array}
$$

can be collapsed to

$$
\begin{aligned}
a_{2 i-3} \gamma t_{i-1} & =a_{2 i-2} \gamma t_{i}, & y_{i-1} \gamma a_{2 i-2}=y_{i+1} \gamma a_{2 i+1} \gamma a_{2 i-1} \\
a_{2 i+1} a_{2 i-1} \gamma t_{i} & =a_{2 i+1} \gamma t_{i+1}=a_{2 i+2} \gamma t_{i+2}, & y_{i+1} \gamma a_{2 i+2}=y_{i+2} \gamma a_{2 i+3}
\end{aligned}
$$

Similarly, if $a_{2 i+1}=1$, then the length of the zigzag can be reduced.

Also, $t_{1} \neq 1$. Because otherwise, we have $d=a_{0} \gamma 1=a_{0} \in U$ which is a contradiction. Now suppose that t_{k} for $k>1$ is the first variable such that $t_{k}=1$, then

$$
\begin{aligned}
d & =a_{0} \gamma t_{1} \\
& =y_{1} \gamma a_{1} \gamma t_{1} \\
& =y_{1} \gamma a_{2} \gamma t_{2} \\
& =y_{2} \gamma a_{3} \gamma t_{3} \\
& \vdots \\
& =y_{k} \gamma a_{2 k-1} \gamma t_{k} \\
& =y_{k} \gamma a_{2 k-1}
\end{aligned}
$$

is a zigzag of length k with value d in which every t_{i} is in S. Therefore all t_{i} 's and $a_{2 i}$'s are members of S. Similarly, all y_{i} 's and $a_{2 i-1}$'s are in S. Hence the theorem follows.

Acknowledgements

The authors are extremely thankful to the editor and learned referees for their valuable suggestions and comments.

References

[1] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Math. Surveys No.7, Amer. Math. Soc., Providence, R. I., vol. I (1961), vol. II (1967).
[2] Hamid Rasouli and Ali Reza shabani, On gamma acts over gamma semigroups, European Journal of Pure and Applied Mathematics, Vol.10, (2017), 739-748.
[3] J. M. Howie, Fundamentals of Semigroup Theory, London Math. Soc. Monographs New-series, (1995).
[4] J. R. Isbell, Epimorphisms and dominions, Proceedings of the conference on Categorical Algebra, La Jolla, (1965), 232-246, Lange and Springer, Berlin (1966).
[5] M. K. Sen and N. K. Saha, On Γ-semigroup I, Bull. Cal. Math. Soci., 78 (1986), 180-186.
[6] M. K. Sen, On Γ-semigroup, Proceedings of the International conference on Algebra and its application, Decker Publication, New Yourk, 311 (1981).
[7] M. K. Sen and A. Seth, Radical of Γ-semigroup, Bull. Cal. Math. Soci., 80 (1988), 189-196.
[8] N. K. Saha, On Г-semigroup II, Bull. Cal. Math. Soci., 79 (1987), 331-335.
[9] N. K. Saha, On Г-semigroup III, Bull. Cal. Math. Soci., 80 (1988), 1-12.

Wajih Ashraf

Department of Mathematics
Assistant Professor of Mathematics
Aligarh Muslim University
Aligarh, India
E-mail: syedwajihashraf@gmail.com

Shabir Ahmad Ahangar

Department of Mathematics
Central University of Kashmir
Srinagar, India
E-mail: shabirmathsamu@gmail.com

Abdus Salam

Department of Mathematics
Aligarh Muslim University
Aligarh, India
E-mail: salam.abdus92@gmail.com

Noor Mohammad Khan

Department of Mathematics
Professor of Mathematics
Aligarh Muslim University
Aligarh, India

E-mail: nm_khan123@yahoo.co.in

[^0]: Received: May 2019; Accepted: February 2020

 * Corresponding Author

