ON Semi- n-Absorbing Submodules

Sh. Khoshdel*
Payame Noor University

M. Maani-Shirazi

Payame Noor University

Abstract

Let n be a positive integer greater than 1. In this paper, we introduce the concept of semi- n-absorbing submodules. several results concerning this class of submodules and examples of them are given.

AMS Subject Classification: 13C13; 13C99
Keywords and Phrases: Flat module, faithfully flat module, multiplication module, semi- n-absorbing ideal, semi- n-absorbing submodule

1. Introduction

During this paper, R is a non-zero commutative ring with identity and all modules are unital. For a submodule N of an R-module M, we denote the ideal $\{r \in R \mid r M \subseteq N\}$ by $\left(N:_{R} M\right)$. The annihilator of M, denoted $\operatorname{ann}(M)$, is $\left(0:_{R} M\right)$. Also, for an element $a \in R$ and an ideal I of $R,\left(N:_{M} a\right)$ is the set of all elements $x \in M$ such that $a x \in N$ and $\left(N:_{M} I\right)$ is the submodule $\{x \in M \mid I x \subseteq N\}$.
The concept of semi-2-absorbing submodule was introduced in [6]. A proper submodule N of an R-module M is called semi-2-absorbing submodule of M, if whenever $a \in R, x \in M$ and $a^{2} x \in N$ then $a x \in N$ or

[^0]$a^{2} \in\left(N:_{R} M\right)$. We extend this concept to semi- n-absorbing submodule, where n is a positive integer greater than 1 . A proper submodule N of an R-module M is called a semi- n-absorbing submodule of M if whenever $a \in R, x \in M$ and $a^{n} x \in N$ then $a x \in N$ or $a^{n} \in\left(N:_{R} M\right)$. As a new class of submodules, we would like to compare it with the class of prime submodules. The main purpose of this paper is to get new results about semi- n-absorbing submodules. Some examples are given as well.

The organization of this paper is as follows. In section 2, we introduce the notion of semi- n-absorbing submodules and investigate some results of them. It is proved that a proper submodule N in an R-module M is semi-n-absorbing if and only if for every $a \in R$ we have $\left(N:_{M} a^{n}\right)=\left(N:_{M} a\right)$ or $\left(N:_{M} a^{n}\right)=M$. Also, we show that in a multiplication R-module M, a submodule N is semi- n-absorbing in M if and only if $\left(N:_{R} M\right)$ is so in R. In proposition 2.23 , it is seen that the inverse image of every semi- n-absorbing submodule is semi- n-absorbing. However, proposition 2.20 shows that this conclusion is not always true for the images of semi- n-absorbing submodules. In example 2.5 , we characterize all semi-n-absorbing submodules of \mathbb{Z}. Also, in example 2.4 , we prove that $\mathbb{Z}_{p^{\infty}}$ as a \mathbb{Z}-module does not have any semi- n-absorbing submodule, for every prime number p. In section 3, we focus on direct sums and tensor products of modules in order to find semi- n-absorbing submodules of them. It is shown that if N is a semi- n-absorbing submodule of an R-module M and F is a flat R-module such that $F \otimes N$ is proper in $F \otimes M$ then $F \otimes N$ is semi- n-absorbing in $F \otimes M$. We prove that the converse holds when F is faithfully flat.

2. Basic Properties of Semi- n-Absorbing Submodules

In this section, we first define the concept of semi- n-absorbing submodules. Then some examples and properties of these submodules are given.

Definition 2.1. Let M be an R-module and n a positive integer greater than 1. A proper submodule N of M is called a semi-n-absorbing submodule of M if for each $a \in R$ and $x \in M, a^{n} x \in N$ implies that $a x \in N$
or $a^{n} \in\left(N:_{R} M\right)$.
Particularly, a proper ideal I of a ring R is called semi- n-absorbing in R if, for each $a, b \in R, a^{n} b \in I$ implies that $a b \in I$ or $a^{n} \in I$.

Recall that a proper submodule N of an R-module M is called prime if for every $a \in R$ and every $x \in M$, ax $\in N$ implies that $x \in N$ or $a \in\left(N:_{R} M\right)$. Obviously, every prime submodule is semi- n-absorbing, for each positive integer n greater than 1 .

Most of the results below are the same as ones in [6] when $n=2$.
Clearly, every proper subspace in a vector space is semi- n-absorbing, where n is a fixed positive integer graeter than 1.

Lemma 2.2.Let N be a proper submodule of an R-module M and n a positive integer greater than 1. The following statements are equivalent.
(i) N is semi-n-absorbing in M;
(ii) For every $a \in R$ and every submodule L of $M, a^{n} L \subseteq N$ implies that $a L \subseteq N$ or $a^{n} \in\left(N:_{R} M\right)$.

Proof. It is clear.
Example 2.3 Let p be a prime number and n a positive integer greater than 1 . The zero submodule of $\mathbb{Z}_{p^{n}}$ as a \mathbb{Z}-module is a semi- n-absorbing submodule. For it, let $a, x \in \mathbb{Z}$ be such that $a^{n} \bar{x}=\overline{0} \in \mathbb{Z}_{p^{n}}$. Then $p^{n} \mid a^{n} x$ and so $p \mid a$ or $p^{n} \mid x$. If $p \mid a$ then $a^{n} \in\left(0: \mathbb{Z} \mathbb{Z}_{p^{n}}\right)$. Otherwise, $p^{n} \mid x$ which implies that $a \bar{x}=\overline{0} \in \mathbb{Z}_{p^{n}}$.

Example 2.4. Let p be a fixed prime number and n a positive integer greater than 1. Each proper submodule of the \mathbb{Z}-module $\mathbb{Z}_{p^{\infty}}$ is of the form $G_{k}=\left(\frac{1}{p^{k}}+\mathbb{Z}\right)$, for a non-negative integer k. Furthermore, for each $k \geqslant 0,\left(G_{k}: \mathbb{Z} \mathbb{Z}_{p^{\infty}}\right)=0$. Note that $p^{n}\left(\frac{1}{p^{n+k}}+\mathbb{Z}\right)=\frac{1}{p^{k}}+\mathbb{Z} \in G_{k}$, but neither $p^{n} \in\left(G_{k}: \mathbb{Z} \mathbb{Z}_{p^{\infty}}\right)=0$ nor $p\left(\frac{1}{p^{n+k}}+\mathbb{Z}\right) \in G_{k}$. Hence $\mathbb{Z}_{p^{\infty}}$ does not have any semi- n-absorbing submodule.
In the following example we characterize all semi- n-absorbing ideals of \mathbb{Z}.

Example 2.5. For a positive integer n greater than 1 , the only semi-n-absorbing ideals in \mathbb{Z} are $0, p \mathbb{Z}, p^{2} \mathbb{Z}, \ldots, p^{n} \mathbb{Z}$, where p is an arbitrary
prime number. Clearly, 0 is semi- n-absorbing. Now, we show that $p^{\alpha} \mathbb{Z}$ is semi- n-absorbing for $1 \leqslant \alpha \leqslant n$. To see this, let $a, x \in \mathbb{Z}$ and $a^{n} x \in$ $p^{\alpha} \mathbb{Z}$. If $p \mid a$ then $a^{n} \in p^{\alpha} \mathbb{Z}$. Otherwise, $p^{\alpha} \mid x$ which implies that $a x \in p^{\alpha} \mathbb{Z}$. Let $\alpha>n$. Then $p^{\alpha}=p^{n} p^{\alpha-n} \in p^{\alpha} \mathbb{Z}$. But $p p^{\alpha-n} \notin p^{\alpha} \mathbb{Z}$ and $p^{n} \notin p^{\alpha} \mathbb{Z}$. In this case, $p^{\alpha} \mathbb{Z}$ is not semi- n-absorbing. Finally, let k be a positive integer such that $k=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, where $k>1, r>1$ and p_{i} 's are distinct prime numbers. Suppose that $\alpha_{i} \geqslant n$, for some i. Then without loss of generality, we can assume that $i=1$. Note that $k=p_{1}^{n} p_{1}^{\alpha_{1}-n} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}} \in k \mathbb{Z}$. But $p_{1} p_{1}^{\alpha_{1}-n} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}} \notin k \mathbb{Z}$ and $p_{1}^{n} \notin k \mathbb{Z}$. If $\alpha_{i}<n$, for each i, then $p_{1}^{n}\left(p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}\right) \in k \mathbb{Z}$ but $p_{1} p_{2}^{\alpha_{2}} \cdots{ }_{r}^{\alpha_{r}} \notin k \mathbb{Z}$ and $p_{1}^{n} \notin k \mathbb{Z}$. Therefore we proved our claim.
This example shows that, for each positive integer greater than 1 , there are semi- n-absorbing submodules which are not prime.
Let M be an R-module. Recall that the idealization $R(+) M=R \times M$ is a ring with identity $(1,0)$ under addition defined by $(a, x)+(b, y)=$ $(a+b, x+y)$ and multiplication defined by $(a, x)(b, y)=(a b, a y+b x)$.

Lemma 2.6. Let n be a positive integer greater than 1. Suppose that I is a proper ideal of the ring R and M is an R-module. Then I is semi-n-absorbing in R if and only if $I(+) M$ is semi-n-absorbing in $R(+) M$.

Proof. Suppose that $I(+) M$ is semi- n-absorbing in $R(+) M$. Let $a, b \in R$ be such that $a^{n} b \in I$. Then we have $(a, 0)^{n}(b, 0) \in I(+) M$. Since $I(+) M$ is semi- n-absorbing in $R(+) M$ so $(a, 0)(b, 0) \in I(+) M$ or $(a, 0)^{n} \in$ $I(+) M$. This yields that $a b \in I$ or $a^{n} \in I$. Thus I is semi- n-absorbing. Similarly, one can prove the other direction.

Lemma 2.7. Let n be a positive integer greater than 1 . If I is a semi-nabsorbing ideal of a ring R, then \sqrt{I} is also semi-n-absorbing.

Proof. Let $a, b \in R, a^{n} b \in \sqrt{I}$ and $a b \notin \sqrt{I}$. There exists a positive integer k such that $\left(a^{n} b\right)^{k} \in I$. Since I is semi- n-absorbing and $\left(a^{k}\right)^{n} b^{k} \in$ I so $a^{k} b^{k} \in I$ or $\left(a^{k}\right)^{n} \in I$. But $a b \notin \sqrt{I}$. Thus $a^{k} b^{k} \notin I$ and hence $\left(a^{k}\right)^{n} \in I$ which shows that $a^{n} \in \sqrt{I}$.

Example 2.8. Consider the idealization $\mathbb{Z}(+) \mathbb{Z}=\mathbb{Z} \times \mathbb{Z}$ Lemma 2.6. Let n be a positive integer greater than $1, p$ a prime number and take
$I=p^{n+1} \mathbb{Z}$. It is seen that $\sqrt{0(+) I}=0(+) \mathbb{Z}$ is semi- n-absorbing in $\mathbb{Z}(+) \mathbb{Z}$. But, note that $(p, 0)^{n}(0, p) \in 0(+) I$ while $(p, 0)(0, p)=\left(0, p^{2}\right) \notin$ $0(+) I$ and $(p, 0)^{n}=\left(p^{n}, 0\right) \notin 0(+) I$. Therefore $0(+) I$ is not semi- $n-$ absorbing.

This example shows that the converse of Lemma 2.7 is not true.
Lemma 2.9. Let n be a positive integer greater than 1 and M an R module. Let N and K be two submodules of M such that $N \subseteq K$. If N is a semi-n-absorbing submodule of M then N is semi-n-absorbing in K.

Proof. It is clear.
Next, we give an example of a module which shows that the converse of the above lemma is not correct.

Example 2.10. Take $N=0$ and $K=\left(\frac{1}{2}+\mathbb{Z}\right)$ in the \mathbb{Z}-module $\mathbb{Z}_{2} \infty$. Then it is easily checked that N is semi- n-absorbing in K while N is not so in M (Example 2.4).

Lemma 2.11. Let n be a positive integer greater than 1 and N a semi-n-absorbing submodule of an R-module M. Then, for each submodule L of M, either $L \subseteq N$ or $L \bigcap N$ is semi-n-absorbing in L.

Proof. Suppose that $L \nsubseteq N$. Then $L \bigcap N$ is proper in L. By the definition, we can easily show that $L \bigcap N$ is semi- n-absorbing in L.

Lemma 2.12. Let n be a positive integer greater than $1, M$ an R module and $\left\{N_{\lambda}\right\}_{\lambda \in \Lambda}$ be a chain of semi-n-absorbing submodules of M. If $N=\bigcup_{\lambda \in \Lambda} N_{\lambda}$ is proper, then N is semi-n-absorbing.

Proof. It follows immediately from the definition of semi- n-absorbing submodules.

The above result is to somehow similar to one in [2].
Example 2.8 shows that the converse of Lemma 2.12 is not true in general.

Let N and K be two isomorphic submodules of an R-module M and n a positive integer greater than 1 . If N is semi- n-absorbing, it is not necessary that K is so. As an example, consider \mathbb{Z} as a \mathbb{Z}-module. Note
that $2^{n} \mathbb{Z}$ and $6^{n} \mathbb{Z}$ are isomorphic submodules in \mathbb{Z}. But $2^{n} \mathbb{Z}$ is a semi-n-absorbing submodule while $6^{n} \mathbb{Z}$ is not.

In general, the intersection of two semi- n-absorbing submodules is not essential to be semi- n-absorbing. See the following example.

Example 2.13. Let $M=\mathbb{Z}$ as a \mathbb{Z}-module, $N=2^{n} \mathbb{Z}$ and $K=$ $3^{n} \mathbb{Z}$. We know that N and K are semi- n-absorbing submodules of M but $N \bigcap K=6^{n} \mathbb{Z}$ is not semi- n-absorbing.

The following lemma will give us a characterization of semi- n-absorbing submodules.

Lemma 2.14. Let n be a positive integer greater than 1 and N a proper submodule of an R-module M. Then N is semi-n-absorbing if and only if for every $a \in R$ we have $\left(N:_{M} a^{n}\right)=\left(N:_{M} a\right)$ or $\left(N:_{M} a^{n}\right)=M$.

Proof. Suppose that N is a semi- n-absorbing submodule of M and $a \in R$. If $\left(N:_{M} a^{n}\right)=M$ then we are done. Otherwise, let $x \in M$ and $a^{n} x \in N$. Since N is semi- n-absorbing and $\left(N:_{M} a^{n}\right) \neq M$ so $a x \in N$ which shows that $x \in\left(N:_{M} a\right)$. Therefore $\left(N:_{M} a^{n}\right) \subseteq\left(N:_{M} a\right)$. Clearly $\left(N:_{M} a\right) \subseteq\left(N:_{M} a^{n}\right)$. Consequently $\left(N:_{M} a\right)=\left(N:_{M} a^{n}\right)$.
Conversely, let $a \in R, x \in M$ and $a^{n} x \in N$. If $\left(N:_{M} a^{n}\right)=M$, then $a^{n} \in\left(N:_{R} M\right)$. Otherwise $\left(N:_{M} a\right)=\left(N:_{M} a^{n}\right)$. Since $x \in\left(N:_{M} a^{n}\right)$ so $x \in\left(N:_{M} a\right)$ i.e., $a x \in N$. Thus N is semi- n-absorbing submodule in M.

Lemma 2.15. Let N be a proper submodule of an R-module M and n a positive integer greater than 1. The following are equivalent.
(i) N is semi- -absorbing;
(ii) $\left(N:_{M} I\right)$ is semi-n-absorbing, for each ideal I of R with $I M \nsubseteq N$;
(iii) $\left(N:_{M}(r)\right)$ is semi-n-absorbing, for each $r \in R$ with $r M \nsubseteq N$.

Proof. (i) \Longrightarrow (ii) Assume that I is an ideal of R with $I M \nsubseteq N$. Let $a \in R, L$ be a submodule of M and $a^{n} L \subseteq\left(N:_{M} I\right)$. Then $a^{n} I L \subseteq$ N. By Lemma 2.2, $a I L \subseteq N$ or $a^{n} \in(N: R M)$. If $a I L \subseteq N$ then $a L \subseteq$ $\left(N:_{M} I\right)$. Consequently, $a L \subseteq\left(N:_{M} I\right)$ or $a^{n} \in\left(N:_{R} M\right)$. Therefore ($N:_{M} I$) is semi- n-absorbing.
$($ ii $) \Longrightarrow$ (iii) It is clear.
(iii) \Longrightarrow (i) Take $r=1$. Then $\left(N:_{M}(1)\right)=N$. So N is semi- n absorbing.

Lemma 2.16. Let N be a proper submodule of an R-module M and n a positive integer greater than 1 . If N is semi-n-absorbing in M then $\left(N:_{R} R x\right)$ is a semi- n-absorbing ideal of R, for all $x \in M \backslash N$.

Proof. Note that $\left(N:_{R} R x\right) \neq R$, for each $x \in M \backslash N$. By the definition of semi- n-absorbing ideals, we can get the result.

Lemma 2.17. Let N be a proper submodule of an R-module M and n a positive integer greater than 1 . If N is a semi-n-absorbing submodule of M then $\left(N:_{R} M\right)$ is semi-n-absorbing as an ideal.

Proof. Let $a, b \in R$ and $a^{n} b \in\left(N:_{R} M\right)$. Then $a^{n}(b M) \subseteq N$. Since N is semi- n-absorbing, so by Lemma $2.2, a b M \subseteq N$ or $a^{n} \in\left(N:_{R} M\right)$. The rest of the proof is clear.

The following proposition shows that for multiplication modules the converse of the above lemma is true.

Proposition 2.18. Let N be a proper submodule of a multiplication R-module M and n a positive integer greater than 1 . If $\left(N:_{R} M\right)$ is a semi-n-absorbing ideal of R then N is semi-n-absorbing as a submodule of M.

Proof. Let $a^{n} x \in N$, for some $a \in R$ and $x \in M$. Then $a^{n} R x \subseteq N$. Since M is multiplication so $R x=I M$, for some ideal I of R. Hence we get $a^{n} I M \subseteq N$ i.e, $a^{n} I \subseteq\left(N:_{R} M\right)$. By Lemma $2.2, a I \subseteq\left(N:_{R} M\right)$ or $a^{n} \in\left(N:_{R} M\right)$. The relation $a I \subseteq\left(N:_{R} M\right)$ implies that $a I M \subseteq N$ and so $a R x \subseteq N$. Therefore $a x \in N$ or $a^{n} \in\left(N:_{R} M\right)$. As a result, N is semi- n-absorbing.

Corollary 2.19. Let M be a finitely generated faithful multiplication R module, N a proper submodule of M and n be a positive integer greater than 1. Then N is a semi-n-absorbing submodule of M if and only if $N=I M$, for a semi-n-absorbing ideal I of R.

Proof. Let N be a semi- n-absorbing submodule of M. Since M is multiplication so $N=I M$ for $I=\left(N:_{R} M\right)$, by [5]. Lemma 2.17 shows
that I is semi- n-absorbing as an ideal.
Conversely, let $N=I M$, for a semi- n-absorbing ideal I of R. Suppose that $a \in R, x \in M$ and $a^{n} x \in N$. Then $a^{n} R x \subseteq N$. Since M is multiplication so $R x=J M$, for an ideal J of R. In this case, we have $a^{n} J M \subseteq N=I M$. But M is finitely generated, faithful and multiplication. Thus $a^{n} J \subseteq I$, (see [5]). Since I is semi- n-absorbing, by lemma (2.), $a J \subseteq I$ or $a^{n} \in I$. Thus $a J M \subseteq I M=N$ or $a^{n} \in I$. If $a J M \subseteq N$ then $a R x \subseteq N$ and so $a x \in N$. Otherwise $a^{n} \in I$ which implies that $a^{n} M \subseteq I M=N$.

Proposition 2.20. Let n be a positive integer greater than $1, f: M \longrightarrow$ M^{\prime} an R-module epimorphism and N be a semi-n-absorbing submodule of M such that $\operatorname{Ker} f \subseteq N$. Then $f(N)$ is a semi-n-absorbing submodule of M^{\prime}.

Proof. It is clear.
Corollary 2.21. Let n be a positive integer greater than $1, N$ a semi-n-absorbing submodule of an R-module M and K be a submodule of M such that $K \subseteq N$. Then $\frac{N}{K}$ is a semi-n-absorbing submodule of $\frac{M}{K}$.
Proof. Let $f: M \rightarrow \frac{M}{K}$ be the canonical epimorphism. Then $K=$ $\operatorname{Ker} f \subseteq N$. By the above proposition, the result follows.

Note that the condition of being epimorphism in Proposition 2.20 is essential. See the following example.

Example 2.22. Let n be a positive integer greater than 1. Define $f: \mathbb{Z} \rightarrow \mathbb{Z}$ by $f(k)=3^{n} k$, for all $k \in \mathbb{Z}$. Then f is a \mathbb{Z}-module homomorphism which is not onto. Take $N=2^{n} \mathbb{Z}$. We have N is semi- n-absorbing but $f(N)=6^{n} \mathbb{Z}$ is not.

Proposition 2.23. Let n be a positive integer greater than 1 , $f: M \rightarrow$ M^{\prime} be an R-module homomorphism and N^{\prime} a semi-n-absorbing submodule of M^{\prime}. Then $f^{-1}\left(N^{\prime}\right)$, the inverse image of N, is semi-n-absorbing in M.

Proof. It is clear.
Corollary 2.24. Let n be a positive integer greater than 1 and N and
K be two submodules of an R-module M such that $K \subseteq N$. If $\frac{N}{K}$ is a semi-n-absorbing submodule of $\frac{M}{K}$, then N is semi-n-absorbing as a submodule of M.

Proof. By considering $f: M \rightarrow \frac{M}{K}$ to be the canonical epimorphism, Proposition 2.23 shows the result.

Recall that a submodule N of an R-module M is called relatively divisible, denoted $R D$, if $r N=N \bigcap r M$, for all $r \in R$.

Proposition 2.25. Let n be a positive integer greater than 1, $N a$ semi-n-absorbing submodule of an R-module M and K be a proper $R D$ submodule of M such that $N \subseteq K$. Then $\frac{K}{N}$ and K are semi-n-absorbing submodules of $\frac{M}{N}$ and M, respectively.

Proof. First we show that $\frac{K}{N}$ is a semi- n-absorbing submodule of $\frac{M}{N}$. Let $a \in R, x+N \in \frac{M}{N}$ and $a^{n}(x+N) \in \frac{K}{N}$. Then $a^{n} x+N=k+N$, for some $k \in K$, and so $a^{n} x-k \in N \subseteq K$. Therefore $a^{n} x \in K$. As $a^{n} x \in a^{n} M$ and K is $R D, a^{n} x \in a^{n} M \bigcap K=a^{n} K$ which implies that $a^{n} x=a^{n} y$, for some $y \in K$. Hence $a^{n}(x-y)=0 \in N$. But N is semi- n-absorbing. Thus $a(x-y) \in N$ or $a^{n} \in\left(N:_{R} M\right)$.
If $a(x-y) \in N$, then $a x+N=a y+N$ and $a(x+N)=a(y+N) \in$ $\frac{K}{N}$. Otherwise $a^{n} \in\left(N:_{R} M\right) \subseteq\left(\frac{K}{N}:_{R} \frac{M}{N}\right)$. Therefore $\frac{K}{N}$ is semi- n absorbing.

Then, we show that K is semi- n-absorbing in M. Let $a \in R, x \in M$ and $a^{n} x \in K$. Thus $a^{n}(x+N) \in \frac{K}{N}$. Since $\frac{K}{N}$ is semi- n-absorbing so $a(x+N) \in \frac{K}{N}$ or $a^{n} \in\left(\frac{K}{N}:_{R} \frac{M}{N}\right)$. Hence $a x \in K$ or $a^{n} \in\left(\frac{K}{N}:_{R} \frac{M}{N}\right)=$ ($K:_{R} M$) and we get the result.

Remark 2.26. Being $R D$ in the above proposition is necessary.
Example 2.27. Let n be a positive integer greater than 1 . Take $M=\mathbb{Z}$ as a \mathbb{Z}-module, $N=0$ which is semi- n-absorbing in M and $K=6^{n} \mathbb{Z}$. We have $K \bigcap 3 \mathbb{Z}=6^{n} \mathbb{Z} \bigcap 3 \mathbb{Z}=6^{n} \mathbb{Z}$. So $3 K \neq K \bigcap 3 \mathbb{Z}$ which shows that K is not an $R D$ submodule. Also, $\frac{K}{N}$ and K are not semi- n-absorbing in $\frac{M}{N}$ and M, respectively.

Proposition 2.28. Let n be a positive integer greater than 1. Assume
that N is a semi-n-absorbing submodule of an R-module M and S a multiplicatively closed subset of R such that $S \bigcap\left(N:_{R} M\right)=\emptyset$. Then $S^{-1} N$ is semi-n-absorbing in the $S^{-1} R$-module $S^{-1} M$.

Proof. Since $S \bigcap\left(N:_{R} M\right)=\varnothing$ so $S^{-1} N$ is proper in $S^{-1} M$. Now we show that $S^{-1} N$ is semi- n-absorbing in $S^{-1} M$. For this, let $\frac{a}{t} \in S^{-1} R$, $\frac{x}{s} \in S^{-1} M$ and $\frac{a^{n}}{t^{n}} \frac{x}{s} \in S^{-1} N$. There exists an element $u \in S$ such that $u a^{n} x \in N$. As N is semi- n-absorbing, $a u x \in N$ or $a^{n} \in\left(N:_{R} M\right)$. If aux $\in N$, then $\frac{a}{t} \frac{x}{s}=\frac{a u x}{t u s} \in S^{-1} N$. In other case, $a^{n} \in\left(N:_{R} M\right)$ and so $\frac{a^{n}}{t^{n}} \in S^{-1}\left(N:_{R} M\right) \subseteq\left(S^{-1} N:_{S^{-1} R} S^{-1} M\right)$. Consequently, $S^{-1} N$ is semi- n-absorbing in $S^{-1} M$.

Example 2.29. Consider the \mathbb{Z}-module $M=\mathbb{Q} \times \mathbb{Q}$, where \mathbb{Q} is the field of rational numbers. Take $N=\mathbb{Z} \times 0$ and $S=\mathbb{Z}-\{0\}$. Then S is a multiplicatively closed subset of \mathbb{Z} and $S^{-1} \mathbb{Z}=\mathbb{Q}$ is a field. So $S^{-1}(\mathbb{Q} \times \mathbb{Q})$ is a vector space over $S^{-1} \mathbb{Z}=\mathbb{Q}$ and the proper submodule $S^{-1} N$ is a semi- n-absorbing submodule of $S^{-1}(\mathbb{Q} \times \mathbb{Q})$, where n is a positive integer greater than 1 . But N is not semi- n-absorbing in the \mathbb{Z}-module M. To see this, Note that $2^{n}\left(\frac{1}{2^{n}}, 0\right)=(1,0) \in N$ but neither $2\left(\frac{1}{2^{n}}, 0\right)=\left(\frac{1}{2^{n-1}}, 0\right) \in N$ nor $2^{n} \in(N: \mathbb{Z} \mathbb{Q} \times \mathbb{Q})=0$.

3. Direct Sum, Tensor Product and Semi- n-Absorbing Submodules

In this section, we first characterize semi- n-absorbing submodules in the R-module $M=M_{1} \oplus M_{2}$. Then we find a condition under which $F \otimes N$ is semi- n-absorbing in $F \otimes M$ if and only if N is semi- n-absorbing in M.

Proposition 3.1. Let n be a positive integer greater than $1, M_{1}$ and M_{2} be R-modules and $M=M_{1} \oplus M_{2}$. Moreover, let N_{1} and N_{2} be proper submodules of M_{1} and M_{2}, respectively. Then
(i) N_{1} is a semi-n-absorbing submodule of M_{1} if and only if $N_{1} \oplus M_{2}$ is semi-n-absorbing in $M=M_{1} \oplus M_{2}$.
(ii) N_{2} is semi-n-absorbing in M_{2} if and only if $M_{1} \oplus N_{2}$ is semi-nabsorbingin M.

Proof. (i) Let N_{1} be semi- n-absorbing in M_{1} and $a \in R,\left(x_{1}, x_{2}\right) \in M$
be such that $a^{n}\left(x_{1}, x_{2}\right) \in N_{1} \oplus M_{2}$. Thus $a^{n} x_{1} \in N_{1}$. By hypothesis, $a x_{1} \in N_{1}$ or $a^{n} \in\left(N_{1}:_{R} M_{1}\right)$. If $a x_{1} \in N_{1}$, then $a\left(x_{1}, x_{2}\right) \in N_{1} \oplus M_{2}$. In other case, $a^{n} \in\left(N_{1}:_{R} M_{1}\right)$ and so $a^{n} \in\left(N_{1} \oplus N_{2}:_{R} M\right)$ which shows that $N_{1} \oplus M_{2}$ is semi- n-absorbing in M.

Conversely, assume that $N_{1} \oplus M_{2}$ is semi- n-absorbing in M. Let $a \in R$, $x_{1} \in M_{1}$ and $a^{n} x_{1} \in N_{1}$. Then $a^{n}\left(x_{1}, 0\right) \in N_{1} \oplus M_{2}$. But $N_{1} \oplus M_{2}$ is semi- n-absorbing. So $a\left(x_{1}, 0\right) \in N_{1} \oplus M_{2}$ or $a^{n} \in\left(N_{1} \oplus M_{2}:_{R} M\right)$. If $a\left(x_{1}, 0\right) \in N_{1} \oplus M_{2}$, then $a x_{1} \in N_{1}$. Otherwise $a^{n} \in\left(N_{1} \oplus M_{2}:_{R} M\right)$ which shows that $a^{n} M_{1} \subseteq N_{1}$. Therefore N_{1} is semi- n-absorbing in M_{1}. (ii) It is similar to part (i).

Proposition 3.2. Let n be a positive integer greater than $1, M_{1}$ and M_{2} two R-modules such that ann $M_{1}+a n n M_{2}=R$ and N be a semi-nabsorbing submodule of the R-module $M=M_{1} \oplus M_{2}$. Then one of the following holds.
(i) $N=N_{1} \oplus M_{2}$ and N_{1} is semi-n-absorbing in M_{1}.
(ii) $N=M_{1} \oplus N_{2}$ and N_{2} is semi-n-absorbing in M_{2}.
(iii) $N=N_{1} \oplus N_{2}$, where N_{1} and N_{2} are semi- n-absorbing in M_{1} and M_{2}, respectively.

Proof. By the proof of Theorem 2.4 in [1], $N=N_{1} \oplus N_{2}$, for some submodules N_{1} of M_{1} and N_{2} of M_{2}. Now if $N=N_{1} \oplus M_{2}$ or $N=$ $M_{1} \oplus N_{2}$, by Proposition 3.1, we are done. Otherwise, $N=N_{1} \oplus N_{2}$, where N_{1} and N_{2} are proper in M_{1} and M_{2}, respectively. Now let $a \in R$, $x_{1} \in M_{1}$ and $a^{n} x_{1} \in N_{1}$. Then $a^{n}\left(x_{1}, 0\right) \in N=N_{1} \oplus N_{2}$. By hypothesis, $a\left(x_{1}, 0\right) \in N=N_{1} \oplus N_{2}$ or $a^{n} \in\left(N_{1} \oplus N_{2}:_{R} M\right)$. In the first case, we get $a x_{1} \in N_{1}$ and in the second $a^{n} \in\left(N_{1}:_{R} M_{1}\right)$. Therefore N_{1} is semi-n-absorbing in M_{1}. Similarly, we can show that N_{2} is semi- n-absorbing in M_{2}.

Lemma 3.3. Let N be a submodule of an R-module M and $r \in R$. Then for every flat R-module F, we have $F \otimes\left(N:_{M} r\right)=\left(F \otimes N:_{F \otimes M} r\right)$.

Proof. See [3].
Theorem 3.4. Let n be a positive integer greater than $1, N$ a semi- n absorbing submodule of an R-module M and F be a flat R-module. If
$F \otimes N$ is a proper submodule of $F \otimes M$ then $F \otimes N$ is a semi-n-absorbing submodule of $F \otimes M$.

Proof. As N is a semi- n-absorbing submodule of M, by Lemma 2.14,
 $a \in R$. Assume $\left(N:_{M} a^{n}\right)=\left(N:_{M} a\right)$. By the above lemma, we have $\left(F \otimes N:_{F \otimes M} a^{n}\right)=F \otimes\left(N:_{M} a^{n}\right)=F \otimes\left(N:_{M} a\right)=\left(F \otimes N:_{F \otimes M} a\right)$. If $\left(N:_{M} a^{n}\right)=M$ then $\left(F \otimes N:_{F \otimes M} a^{n}\right)=F \otimes\left(N:_{M} a^{n}\right)=F \otimes M$. Hence $F \otimes N$ is a semi- n-absorbing submodule of $F \otimes M$, by Lemma 2.14.
Here, we give an example satisfying Theorem 3.4.
Example 3.5. \mathbb{Q} is a flat \mathbb{Z}-module ([4]). By Example 2.5, 0 is semi-n-absorbing in \mathbb{Z}, where n is a positive integer greater than 1 . Also, we have $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z} \cong \mathbb{Q}$ and $\mathbb{Q} \otimes_{\mathbb{Z}} 0=0$. Therefore $\mathbb{Q} \otimes_{\mathbb{Z}} 0$ is proper in $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}$ and so is semi- n-absorbing, by Theorem 3.4.

Theorem 3.6. Let n be a positive integer greater than 1 and F be a faithfully flat R-module. Then N is a semi-n-absorbing submodule of M if and only if $F \otimes N$ is semi-n-absorbing in $F \otimes M$.
Proof. Let N be a semi- n-absorbing submodule of M. If $F \otimes N=F \otimes M$ then $0 \rightarrow F \otimes N \rightarrow F \otimes M \rightarrow 0$ is an exact sequence. Since F is faithfully flat so $0 \rightarrow N \rightarrow M \rightarrow 0$ is exact which shows that $N=M$, a contradiction. So $F \otimes N \neq F \otimes M$. By the above theorem, we have $F \otimes N$ is a semi- n-absorbing submodule of $F \otimes M$.
Conversely, suppose that $F \otimes N$ is semi- n-absorbing in $F \otimes M$. Thus $F \otimes N \neq F \otimes M$ and so $N \neq M$. Let $a \in R$. By Lemma 2.14, $(F \otimes N: F \otimes M$ $\left.a^{n}\right)=\left(F \otimes N:_{F \otimes M} a\right)$ or $\left(F \otimes N:_{F \otimes M} a^{n}\right)=F \otimes M$. Suppose that $\left(F \otimes N: F \otimes M a^{n}\right)=\left(F \otimes N:_{F \otimes M} a\right)$. Then, by Lemma 3.3, we get $F \otimes\left(N:_{M} a^{n}\right)=F \otimes\left(N:_{M} a\right)$ and so $0 \rightarrow F \otimes\left(N:_{M} a^{n}\right) \rightarrow F \otimes\left(N:_{M}\right.$ $a) \rightarrow 0$ is an exact sequence. But F is faithfully flat. Therefore $0 \rightarrow$ $\left(N:_{M} a^{n}\right) \rightarrow\left(N:_{M} a\right) \rightarrow 0$ is exact. Thus $\left(N:_{M} a^{n}\right)=\left(N:_{M} a\right)$. Now, suppose that $\left(F \otimes N:_{F \otimes M} a^{n}\right)=F \otimes M$. In this case, $F \otimes\left(N:_{M} a^{n}\right)=$ $\left(F \otimes N:_{F \otimes M} a^{n}\right)=F \otimes M$. Hence $0 \rightarrow F \otimes\left(N:_{M} a^{n}\right) \rightarrow F \otimes M \rightarrow 0$ is an exact sequence. Since F is faithfully flat so $0 \rightarrow\left(N:_{M} a^{n}\right) \rightarrow M \rightarrow 0$ is exact i.e., $\left(N:_{M} a^{n}\right)=M$. Consequently, N is semi- n-absorbing in M.

4. Conclusion

The class of semi- n-absorbing submodules is a new one which is comparable with the class of prime submodules. In fact, every prime submodule is semi- n-absorbing, for each positive integer n greater than 1 . But the converse is not true, in general. The definition of semi- n-absorbing submodules is a tool which gives many good information.

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestions.

References

[1] M. S. Abbas, On Fully Stable Modules, Ph.D Thesis, University of Baghdad, (1990).
[2] H. Ansari-Toroghy and F. Farshadifar, Quasi 2-absorbing second modules, Commun. Fac. Sci. Univ. Ank. Ser. Math. Stat., 68 (1) (2019), 1090-1096.
[3] A. Azizi, Weakly prime submodules and prime submodules, Glasgow Math. J., 48 (2006), 343-346.
[4] P. E. Bland, Rings and Their Modules, Walter de Gruyter GmbH and Co. KG, Berlin New York, (2011).
[5] Z. El-Bast, Multiplication modules, Comm. in Alg., 16 (4) (2007), 755779.
[6] I. M. Hadi and A. Harfash, Semi-2-Absorbing Submodules and Semi-2-Absorbing modules, International Journal of Advanced Scientific and Technical Research, 5 (3) (2015), 521-530.

Shamsolmolouk Khoshdel

Assistant Professor of Mathematics
Department of Mathematics
Payame Noor University
Tehran, Iran
E-mail: khoshdel@pnu.ac.ir

Mansooreh Maani-Shirazi

Assistant Professor of Mathematics
Department of Mathematics
Payame Noor University
Tehran, Iran
E-mail: maani@pnu.ac.ir

[^0]: Received: May 2019; Accepted: November 2019
 *Corresponding author

