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1. Introduction

Since 1965 when Zadeh [42] introduced the fuzzy set theory, several appli-
cations of this theory have been investigated in many disciplines to handle
uncertainties. Fuzzy set is any set whose elements have degrees of membership,
as opposed to crisp membership or non-membership in classical sets. Fuzzy
analysis is based on the notion of fuzzy numbers which is a particular fuzzy set
of real numbers. Dubois and Prade [12] introduced the concept of fuzzy num-
bers and a modified definition was also presented by Goetschel and Voxman
[18]. This idea provided considerably the development of theories concerning
the sequences of fuzzy numbers and fuzzy number valued functions. The notion
of sequences of fuzzy numbers and some of its properties including convergence,
boundedness etc. was introduced and studied by Matloka [19] and Nanda [23].

Received: April 2019; Accepted: September 2019

169



170 C. BELEN

The idea of statistical convergence of a sequence was introduced by Fast [15]
and Steinhaus [30]. Nuray and Savag [24] extented this notion for sequences
of fuzzy numbers. In recent years, special summability methods of sequences
of fuzzy numbers, including Cesaro, weighted mean (or Riesz), Borel, Holder,
Abel and Euler methods, have been studied by several authors (¢f. [5, 6, 7,
8,9, 10, 25, 37, 38, 39]). All of these works include some Tauberian theorems
which allow to deduce the classical (ordinary) convergence from aforementioned
methods in the setting of fuzzy analysis. Moreover, some fuzzy analogues of
statistical extensions of some Tauberian theorems are established in [1, 27, 31,
32, 41]. The readers should see [33, 34, 35] for more information in the theory
of summability of sequences of fuzzy numbers.

Yavuz et al. [40] introduced Cesaro summability of integrals of fuzzy number
valued functions and presented one-sided Tauberian conditions under which
convergence of improper fuzzy Riemann integrals follows from Cesaro summa-
bility. Onder and Canak [26] and also Belen [4] studied summability of Rie-
mann integrals of fuzzy valued functions with respect to a weight function ¢(¢),
shortly (W, q) summability, and they recovered convergence of an improper
fuzzy Riemann integral from its (W, q) summability.

Motivated by Moricz’s idea of statistical limit of measurable functions at infin-
ity (see [21]), we define the statistical limit of continuous fuzzy valued functions
at infinity and then we examine relationship between statistical and ordinary
limits.

Secondly we present a necessary and sufficient condition under which statistical
limit of integrals of continuous fuzzy valued functions follows from its statistical
(N , q) summability.

2. Preliminaries

In this section we first recall some basic facts on fuzzy numbers and fuzzy
number valued functions. If X is a collection of objects, then a fuzzy set u in
X is ordered pairs

w={(z, () : 2 € X},

where i, (z) is membership function for the fuzzy set u that maps each ele-
ment of X to a membership grade between 0 and 1. We note that the terms
membership function and fuzzy set is used interchangeably and so we prefer to
write u (z) instead of i, ().

Let R denote the set of all real numbers. A map u : R — [0, 1] is called a fuzzy
number with the following properties (see e.g. [12, 18]):
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(7) w is normal, i.e. there exists ¢ € R such that u (z¢) =

L
(44) w is fuzzy convex, i.e. u(Ax + (1 — A)y) = min{u(z),u(y)} forall z,y € R
and for all A € [0,1].

(#4i) u is upper semi continuous, i.e. {z : u(x) = a} is closed for every «;

(<v) The support of u denoted by [u], = {z € R:u(x) > 0} is a compact set,
where A denotes the closure of the set A in the usual topology of R.

We denote the set of all fuzzy numbers by Rz and call it fuzzy number space.

a-level set [u],, of u € R is defined by

{zxeR:u(x)>a}, 0<a<l

[u]o =

{zeR:u(x)>a}, a=0.

Note that [u], is called the support of u € Rx. Properties (i)-(iv) imply that
[u],, is non-empty closed, bounded and convex subset of R defined by [u], =
[ua, ual-

Each a € R can be regarded as a fuzzy number @ defined by

Tr=a

a(z) = X{a} (z) =
0, z#a.

Ifu,v € Rr, 0 < a<1,X€R, then the addition and product with real scalars
in Rz are defined by

[u+ 0], = [ul, + [V]y = [ug +vg,uf +vf]

and
], = Au], = [Mug, Aul] (A=20) or [Auf,ug] (A<0).

[e3%

Note that 1u = ul = v and u + 0 = 0 + u, that is, 0 is neutral element in Rz
with respect to the +. Also for any u,v € Rx and A € R we have u+v =v+u
and A (u+v) = du+ v (see e.g. [2, 14]).

If we define D : Rz x Rz — [0, +00) by
D (’LL,’U) = supocE[O,l]d ([u]a ) [U}a) = SUPae(0,1] max{’u; - U;‘ ) |U(J)¢r - U;r|} )

then we have the following.

Lemma 2.1. (Rgz, D) is a complete metric space and also
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(7) D (Au, W) = |A| D (u,v) for any u,v € Rx and A € R;
(7)) D (u+w,v+w) = D (u,v) for any u,v,w € Rr;
( (

iii) D(u+v,w+z2) < D(u,w) + D(v,2) for any u,v,w,z € Rxr (see e.g.
20)).

We say that f(x) is a fuzzy number valued function if f : A C R — Ry, A
fuzzy number valued function f (z) is said to be bounded if there exists a M

€ R such that D (f(x) ,6) < M for all z € A. Also continuity of a fuzzy valued
function at a point can be described with the help of metric defined by (1).

A fuzzy number valued function f : [a,b] — Ry is Riemann integrable on [a, b]
if there exists I € Rz with the property: for any € > 0, there exists § > 0 such
that for any partition of [a,b], P:a =20 < 21 < 22 < -+ < &, = b of norm
|P| < 4, and for any points &; € [x;, zi+1], ¢ =0,1,...,n — 1, we have

D (Z_: F(&) (i1 — x3) 7I> <e.
1=0

In this case we write [ = f: f (z) dx.

Note that if f : [a,b] — Rz is continuous then f is fuzzy Riemann integrable
on [a,b] (see [17]).

Lemma 2.2. [3] Let f,§ : [a,b] — R be continuous functions. Then
(i) The function F : [a,b] — [0,00) defined by F (x) = D (}v(x),g(;v)) is

continuous on [a,b] and

D (/:ﬂx)dx,/aba(x)dx) <LbD(f<x>,§<x>) da.

(i)
3 (z) = / Ft)dt

is a continuous fuzzy number valued function in x € [a,b].

Now we deal with the concept of fuzzy Riemann-Stieltjes integral introduced
by Ren and Wu [29].

Let f: [a,b] — Rz be a bounded function, ¢ be an increasing real function on
[a,b] and w € Rx. Also let P be any partition of [a, ] such that P : a = zp <
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x1 < -+ < & = b. Choose any point &; € [x;, 2;41],7=0,1,...,n— 1, and form
the fuzzy summation

n—1

r=Y_f&)la(@i) —q@)].

i=0

Then we say that w is the Riemann-Stieltjes integral of f with respect to
the function ¢ if for any € > 0, there exists ¢ (¢) > 0 such that for every
partition P with |P| := maxogic<n—1 (Tit1 — ;) < 0 (€), and for every choice
of points &;, we have D (w,s7) < e. In this case we write w = ff qu. If
the Riemann-Stieltjes integral of fwith respect to the function ¢ exists, then
we write (f, q) € FRS[a,b]. Some important properties of fuzzy Riemann-
Stieltjes integral can be listed as follows:

Lemma 2.3. [29]

(1) If f: qu exists and c is a positive constant then f: (cf) dq exists and

f; (cf) dg = cfab fdg.
(i1) If f(z) = u € Re for all z € [a,b], then (f, g) € FRS [a,b] and

b
[ Fda=ua®) - a(@).
(4i1) If f: [a,b] — Rz is continuous and q is an increasing real function on
la,0], then (f, q) € FRS[a,b].
(i) If (f, ) € FRS [a,b] , then for any ¢ € (a,b), we have (f, q) € FRS [a, (],

f7q> € FRS[c,b] and
/abqu=/acqu+/cbqu~

Let f,§ : [a,b] — Rz are continuous and g is an increasing real function on
[a,b] . Then we have (see, [4])

D (/abfdm/:ﬁdq) </abD(f7§) dg (2)

where the right-hand side integral exists in usual Riemann-Stieltjes sense since
F(z) =D (f (x) ,E(m)) is continuous and ¢ is increasing real functions on
[a,b].
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In the rest of this section we deal with the concept of statistical limit of mea-
surable functions at oo introduced by Méricz (see [21] ).

Definition 2.4. Let f (x) be a real valued measurable function (in Lebesgue’s
sense) on any interval [0,00) . We say that f (x) has statistical limit as © — oo
if there exists a l € R such that for each e >0

Jim = |{z € [0,0): |f () ~ 1] > )| =0, 3)

where by |{.}|, we denote the Lebesgue measure of the set {.}. In this case we
write st- im f (x) =1.

Remark 2.5. (i) According to definition of a measurable function we can re-
place |f () =1 > & with |f (x) = 1] > € in (8). Also, the interval [0,a) can be
replaced with [0, a].
(i4) Let A C R be a measurable set. If
A
AN

a—00 a

=0

then the set A is said to has zero density. Hence Definition 2.4 can be charac-
terized as follows:
st-lim f (x) =1< There exists a set A C R of zero density such that

xTr— 00

li =1 (cf. [28]).
oo, I ad @)=k [28])

(#73) If lim f (z) =1 then for each e > 0 there exist a & > 0 such that for all x €
r—00

[0,00)\ [0, 9] we have |f (x) —1| < . Since the interval [0,0] has zero density
we obtain that st- lim f(x) =1. Thus lim f(x) =1 implies st- lim f (z) =1

but the converse statement is not true in general. For instance, consider the
measurable function

ﬂ@:XmmHN@Z{

Then st-lim f(x) =0 but the limit lim f(x) does not exist ( cf. [16]).

Tr— 00

1, ze2n2"+1), n=1,2,3,...
0, otherwise.

Let ¢ be real valued measurable function on [0,00). Supremum of numbers
£ € R such that

Jim = (o € 0,]: 6 () > B} #0

is called the statistical limit superior of ¢ as * — oo and is denoted by st-
limsup ¢ (z). Similarly, infimum of numbers o € R such that

r— 00

lim l|{glc€ [0,a] : o (x) < a}| #0

a—oo
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is called the statistical limit inferior of ¢ as x — oo and is denoted by st-
liminf ¢ (z) (¢f. [21]).

Remark 2.6. [21/(i) st-limsup ¢ (x) = —st-liminf (—¢ (x)).
T—00 T—00 .

1
(1) If ¢ (x) > 0 for all x > 0 then st-limsup ¢ (x) = {st — lim inf )

(7i1) ¢ is said to be statistically bounded if there exist K € R such that

lim < |{z € [0,a] : |6 ()] > K}| = 0.

a—oo

If ¢ is statistically bounded, then st- lim ¢ (x) =1 if and only if st-limsup ¢ (z) =
st-liminf ¢ (z) =1 (cf. ).

3. Main Results

First we adapt the Definition 2.4 to the fuzzy valued functions. We know that
if f:[0,a] — Ryg is continuous and p € Rz then the real valued function

F(z) =D (]T(cv) , 1) is continuous on [0, a] and so measurable in Lebesgue’s
sense.

Definition 3.1. Let f: [0,00) — Rz be a continuous fuzzy number valued
function. If there exist u € Ry such that for all e >0

1 ~

lim — Hx € [0,a] : D (f(x%u) > 5}‘ =0,
a—0o0

then we say that f has statistical limit p as v — oo. If this is the case, we write

st-lim f(x) =p or f(x) =

As in Remark 2.5 the statement

F@)—=p=f) -5 (4)

is true. But the converse statement of (4) is not necessarily true in general,
follows from example given below.

Example 3.2. Consider the fuzzy number valued function f : [0,00) — Rz
defined by

x € [0,1]

otherwise

COR b
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where
u—x+1, welr—112],
n(x)(w)=<¢ —u+z+1, ue (z,z+1]
0, otherwise
and
1 1 1
U7T+1+1, Ue{mfl,m7
@@= a1, e (Hr 4
0, otherwise.
Let
u+]~a ’LLE[*LO],
pu)=< —u+1, we(0,1]
0, otherwise.

The interval [0, 1] has zero density and for all = ¢ [0, 1] we have

D (F(@).n) = supmax{lng (@) = gl Ind () = ]}

1
——fa-1-(a—1
o1 te (a—1)

+l-a-(1-a)

)

= supmax {

}:1—>0 (2 — ).

r+1 r+1

Hence f(x) =L but f(x) s 1.

The following is a Tauberian theorem from f (z) =5 p to f (z) — p (z — o0).
Note that the conditions (5) and (6) are fuzzy analogues of the conditions given
by Chen and Chang (c¢f. Theorem 3.1 in [11]).

Theorem 3.3. Let f: [0,00) — Rz be a continuous fuzzy number valued
function and st- lim f (x) = p. If one of the conditions
rT—00

)i\nf {lim sup (supm<u<>\mD (f(u) , f(x))) } =0 (5)

>1 T—00

or

inf {nm sup (supxe<ucaD (F (), (m)))} =0 (6)

0<AK1 xr—00

holds then lim f(z) = p.
T—00

Proof. Conditions (5) and (6) are equivalent to each other since A > 1 & 1 <
1. Hence, it is sufficient to prove the case of (5). Let € > 0. By (5) we can find
A > 1 and z; > 0 such that

T 2T = SUPr<u<r D (f(u) ,f(ac)) <e. (7)



TAUBERIAN THEOREMS FOR STATISTICAL LIMIT ... 177

By the assumption of st- lim f(x) = p there exists x5 > 0 such that for a > o,

r— 00

Yuewa:p(Fuyn)>e)<1- 1 ®)

Let zp = max {z1,22}. Then for x > o we have \x > x5 and so by (7)

Hue [0, Az :D(f(u),,u) 25}‘ < <1—i) Ar=(dx—x).

Hence we can find u* € (z, Az) such that D (f(u*) ,u) < e. Combining this
with (7) we get

D(f@.n) =D (F@+Fw).u+Fw))

Thus we have lim f(x) =p O
Tr— 00

We note that the conditions (5) and (6) can be replaced with

int fimsu (supecucsc D (F0) . F@)) b =0 )
and
0<11§£1 {ligirlsolip (supmgung (f(u) , f(x)))} =0 (10)

respectively. If the condition (9) or (10) holds then we say that the function f
is slowly oscillating (see e.g. [22]).
Now we present the idea of statistically (N, q) summability for continuous

fuzzy valued functions. From now on let @) be class of all increasing functions
0+#q:[0,00) — [0,00) such that ¢(0) =0, ¢ (t) — oo as t — oco. Let

st- lim inf 9(A1)

t—oo  q(t)

Suppose f: [0,00) — R is a continuous fuzzy number valued function function
and let

>1forall A>1 (11)

sw= [ 7 nd ¢ L tgx x
50 = [ Fwaw wd 70) = — [ 5@ da(a).

provided ¢ (t) > 0. Note that the second integral exists in the fuzzy Riemann-
Stieltjes sense.
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The fuzzy number valued function §(¢) is said to be statistically summable to
a fuzzy number [ € Rz with respect to weight function g, in short statistically
(N, q) summable to [ € Rz, if

st- lim o (t) =1

t—oo
or equivalently

st- lim D (3 (£),1) = 0.

In this case we write s (t) =4 (N.q) . As in the ordinary case ( see, Fekete
[16]) the implication

() 5 1=31t) %1 (N,q)

is true but its converse is not true in general. Our aim is to find conditions
from 3 () =5 1 (N, q) to 5(t) =5 1.

Remark 3.4. (i) The condition (11) is equivalent with

st-lim inf a(t)

mint oo > 1 for every 0 < A < 1

(cf. [16]).

(i¢) In [16], Fekete proved, if f is real or complex valued function and st-
lim; . f(t) = I, then for each A > 0 st-lim;_, f(\t) = . Now, if f is
a fuzzy number valued function and | € Rg then st-lim;y_,oo D (f(t),l) =0
implies st-lim;_, oo D (f(/\t) ,l) =0, for each A > 0, since D (f(t) ,l) 18 a real
valued function.

Lemma 3.5. Assume that the function ¢ € Q has the property (11) and let
st-limy_,o0 0 (t) = 1. Then for every A > 1

. 1 M
st—tlirgloD (q()\t)—q(t)/t 5(x) dq(x),l) (12)

and for every 0 < A <1

st lim D <M /;'g(x) dq(x),l) ~0. (13)
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Proof. It is enough to prove the case A > 1, the case 0 < A < 1 is similar. By
Lemma 2.1 (ii)-(iii) we have

1 )\tN
D<qw>—q<t>/t S@dq(x)’l)

At
_D (M/t §(:v)dq(x)+5(t),5(t)+l>

1 At
<D (qw)_q(t)/t §(m)dq(w),5(t)> +D (7 (1),1)
_a)
q(At) —q(t)

From (11), for every A > 1 we have

At
st-lim sup L = st-limsup ————
1 q(t)

t—o0 q(At) — q(t) t—o0 — 200

- {St- lin inf (1 — qq((;z))J h (15)

1
=/1-— < 0
[ st-lim inf q()‘t)]

t—o0 q(t)

(D(@At), )+ D (t),l)+D(c(t),]).

Thus the desired result follows from (14) and (15). O
Theorem 3.6. Assume that the function ¢ € Q has the property (11) and,

f :[0,00) = Rg be a continuous fuzzy number valued function such that st-
tlim o(t)=1. Then st—tlim 5(t) =1 if and only if for each € > 0, we have

inf liczrisgpé Ht €[0,a: D (M/ﬁ%m dq(x),'s“(t)) > 5}’ _

or

e st [freoap (oo [ Soiians) =< <o
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Proof. Necessity. Assume that st—tlim o(t) =1 and st—tlim 5(t) = [ hold.

Then by Lemma 3.5 we have (12) and (13), respectively for every A > 1 and
0 < A< 1. Thus for A > 1 we have

! My 5 1 At ~
D (q()\t)—q(t) . s(@) dq(x),s(t)) <D (q()\t)—q(t)ft 5 (z) dq(m),l)

+D(5(t),1) =5 0+0=0.

Hence we get (16). Also for 0 < A < 1 we have

D (q(t)—lq()\t)/,\ig(x) dq(x),g(t)) <D <q(t)—1q()\t)/)\i 5(x) dq(sc),l)

+DGE),)-50+0=0

and so (17) holds.
Sufficiency. Let st—tlim o (t) = I and assume that condition (16) holds. We

prove that st—tlim 5(t) = L. For this it is enough to show that D (5 (t) ,5 (t)) =%
0. In the case of A > 1 we have

At
DE050) <D (-t S0 aw50)

So we have the inequality
{t€0,a]: D(o(t),5(t) = e}

< Ht €0,a]: D <M[t§(:ﬁ) dq(x),'g(t)> >

+Hte [0,a] : mp(g(t),aw)) > ;H

I

Do ™

By the condition (16) for each ¢ > 0 there exists A > 1 such that

At
1i(IIILS£p% Ht €[0,a]: D (q()\t)l—q(t)/t 5(x) dq(x),g(t)> > %
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On the other hand by (15) and Remark 3.4 (ii) we have

. 1 ()
hflfip& Ht €[0,qa] : 7O — 0@

Combining (18), (19) and (20) we have

D(&(tm(m»;}’o. (20)

limsup% {te[0,a]:DGEH),50) >} <o

a—0o0

Since 6 > 0 is arbitrary we have
1 ~ ~
lim - {t €[0,a] : D(c(t),5(t)) =€} =0
for each & > 0. Thus we conclude that st—flim $(t) =1. Inthecaseof 0 < A < 1,
one can easily show that st—tlim st)=1. 0O

Following Fekete [16], we say that the function s: [0,00) — Ry is statistically
slowly oscillating if

. 1
inf lim sup —
A>1 gooo G

{te 0,a] : max D (5(z),3(t)) >5H =0 (21)

t<a <At

or equivalently

inf limsupl‘{tG[O,a}: ma D(E(z),g(t))>€}‘—0 (22)

0<A<] g0 @ A<zt
holds for each € > 0. By inequality (2) and Lemma 2.1 (i) we have

(e @) (e 50))

) A 1 At
=D (q()\t)q(t)/t 5 (x)dq(x), m/t 5(t) dQ($>>
1 At

< m ) D (5(x),5(t))dg(x)

o 1 At o
<, max D (3(2),5(1)) q(At)—q(t)/t dg(z) = max D(3(z),3(t))

Hence the condition (21) implies (16). Similarly (22) implies (17). Thus we
deduce the following result from Theorem 3.6.
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Corollary 3.7. Assume that the function ¢ € Q has the property (11) and,

f :]0,00) = Rg be a continuous fuzzy number valued function such that its

integral function §(t) is statistically slowly oscillating. If st—tlim o (t) =1 then
— 00

st-tlim s(t)=1.
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