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1. Introduction

In statistical inference, for mathematical tractability reasons and attractive
properties, the normal distribution plays a central role. However, practical
studies show that several phenomena are not always in agreement with nor-
mality assumption due to exhibiting non-normal features such as asymmetry
and heavy tails. Although, a quick way to deal with this drawback is to exploit
some transformations on the data, it may cause some other potential deficien-
cies (see [16]). On the other hand, there are two approaches among researchers
to construct more flexible distributions that possess skewness and kurtosis. [4,
5] established the first approach, initially in the univariate case, by modifying
the normal density function in a multiplicative manner and imposing shape pa-
rameter. The new distribution was called skew-normal (SN) model. Later, the
multivariate extension of the SN distribution was proposed by [9]. Even though
the SN distribution provides more flexible families than the normal model, it
does not accommodate heavy tails data and so that it is not flexible enough to
model data sets that simultaneously have skew and heavy-tailed empirical dis-
tributions. This leads to proposing some generalizations of the SN distribution
that can be found in the work of [7, 8, 13, 14, 17, 41] and the acknowledged
articles therein, among others.

An alternative approach for constructing more flexible families than normal
model is obtained by normal mean-variance mixture (NMV) representation,
introduced by [11]. The NMV models assume not only that the variance is not
fixed for all members of the population but also that they have non-constant
mean. This is done by introducing randomness into the mean and variance
of a normal distribution via a positive mixing variable. Therefore, the NMV
class of distributions can control skewness as well as leptokurtosis, simultane-
ously. Specifically, a random vector X is distributed by the NMV model if it
approaches the following representation:

XL+ Wn+ w2z, (1)

where pu,n € RP, Z ~ N,(0,X), a p-dimensional multivariate normal (MN)
distribution with mean 0 and covariance matrix 3, and W is a non-negative
random variable, independent of Z, with cumulative distribution function (cdf)
H(-;0) parametrized by the vector parameter 6. Details in-depth of the NMV
model can be found in [27]. Recently, some new spatial cases of NMV model
have been considered. For instance [37] proposed normal mean-variance mixture
of Birnbaum-Saunders distribution (NMVBS) by assuming that the mixing
random variable is followed by Birnbaum-Saunders (BS) [12] model. [32] showed
that the NMVBS takes wider ranges of skewness and kurtosis as compared
with the SN distribution and some of its extensions. Moreover, if W in (1)
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is followed by the Lindley distribution [24], then the normal mean-variance
mixture Lindley distribution is obtained [32]. [3] introduced a brilliant class
of distributions by assuming generalized inverse Gaussian (GIG) distribution
([21]) for W and replacing normal distribution for Z with SN model. The new
model contains the former and possess some interesting properties.

Owing to the proven proficiency of the two-parameter BS distribution in ap-
plied statistics, the main objective of the present work is to introduce a new
skew and heavy-tailed distribution by representation (1) when 7 tends to ze-
ros. The model is constructed by considering W and Z follow BS and re-
stricted skew-normal (rMSN) distributions, respectively. The new model is
called the multivariate scale mixture of restricted skew-normal BS (rMSN-BS)
distribution. Some properties of the new model are studied and expectation-
maximization (EM) algorithm ([15]) is used to obtain maximum likelihood
(ML) estimate of parameters .

To give a short overview of this paper: Section 2 provides a shot review on the
previous works. In Section 3, the formulation of new model is described and
some of its properties are outlined. The ML estimates of the rMSN-BS distribu-
tion via implementing EM algorithm is also presented in Section 4. Some com-
putational aspects for the EM algorithm are summarized in Section 5. Finally,
in Sections 6 and 7, we illustrate the performance of the rMSN-BS distribution
through analyzing real as well as synthetic datasets.

2. Background

2.1 The rMSN distribution

let ¢,(-;€, ) be the probability density function (pdf) of N,(¢,X), and ®(-)
represents the cdf of the standard normal distribution. A random vector Z is
said to follow a p-variate rMSN distribution ([38]) with location and skewness
vectors & and ), respectively, and scale covariance matrix X, if its pdf is

ATz~ f))
VI-ATQ- 1N/’
where @ = X + A\T. The notation Z ~ rMSN(¢, 3, \) will be used for a

random vector Z with density (2). Following [38], the rMSN distribution can
be presented by a convenient stochastic representation

F(2l€, 330) = 26, (2], ) ( @)

Z=\Xo|+ X1, XolX, (3)

where X ~ N(0,1), X; ~ N, (&, X) and the symbol L indicates independence.
Obviously, |Xp| follows standard half-normal (HN) distribution, denoted by
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|Xo| ~ HN(0,1), and Z approaches N, (¢, %) pdf as A = 0. The mean and
covariance of Z can be obtained by (3), respectively as

E(Z)=¢+ \/EA and cov(Z) =X+ (1 — %))\)\T. (4)

2.2 Birnbaum-saunders distribution

The well-known BS distribution is an asymmetric, non-negative model that
has been recently received considerable attention in reliability and lifetime
studies. Although the BS distribution was initially pioneered for modeling the
fatigue life of structures under cyclic stress, it has been commonly accepted
that the BS distribution can be taken as promising alternative to the Weibull,
gamma, and log-normal models. See [26, 31, 39 ], among others, to find some
applications of the BS distribution.

A random variable W taking positive real values follows the BS distribution
with the shape « and scale 3 parameters if the pdf of W is given as

F(w7a7ﬁ):aw13ﬁﬁ¢[;<\/g_\/§>‘|7 w>0,a>0,0>0.

We denote it by W ~ BS(«, ). It can be easily seen that the pdf of W is a
mixture of two GIG distributions, i.e,

1 1 1 1 -1 1
f(wéa,ﬁ) = §fGIG <w; 57 W7 oi) + §fGIG <w; 7; @7 oi) » (5)

where fara (K, x, %) denotes the pdf of GIG distribution with parameter set
(K, x, %), denoted by T ~ GIG(k, x, ), and pdf

Y r/2 ot -1,
fGIG(t;K‘7X71/)):(7)K > — XPy 5 t X+t¢ ) t>07
X' 2Ku(Vix) 7 ( )
where K (-) denotes the modified Bessel function of the third kind with index k.
The parameters of GIG distribution should fulfill in the condition x > 0,1 > 0,
ifk>0;v%>0,x>0,if Kk <0, and x > 0,9 > 0, otherwise. The attractive
overviews of BS distribution and its properties can be found in [10, 20, 23].

3. Model Formulation

In this section, we start by defining the rMSN-BS distribution and its hi-
erarchical formulation and then introduce some further properties. A ran-
dom vector Y is said to follow a p-variate rMSN-BS distribution, denoted
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by Y ~ rMSN-BS(¢, X, A, a), if it can be generated by

Y =4+ V7L = £+ VT (A Xo| + X1), (6)

where Z ~ rMSN(0,%, ), 7 ~ BS(,1) Xo ~ N(0,1), X; ~ N,(0,%) and
Z 1 7. When A closes to zero, the rMSN-BS distribution tends to the sym-
metric class of scale mixture of normal distribution based on the BS distribu-
tion, or symmetric NMVBS model. Also, the rMSN-BS distribution tends to
rMSN(&, 3, \) as « approaches zero.

The following result is an extension of lemma 1 in [6], which is crucial for
evaluating some integrations in this paper.

Proposition 3.1. If 7 ~ GIG(k, x, ), then for any a € R
E (@(771/20‘)) = FGH(Q; Ry X5 1/’)7

where FGH(7 Ky X w) = FGH1 (7 0,0,1, %, X 1/1) in which FGHP('; s 17, 27 Ky ¢7 X)
denotes the cdf of p-variate generalized hyperbolic distribution (GH,(u,n, %, &, ¥, X))

[27].

Proof. Let V ~ N(0,1) be a random variable independent of 7. Then,

E(0(r2a)) = B (P(V < 77 a)l7)

—E, (P(Tl/2V < a)|7’) — P(T* < a),

where T* ~ GH;(0,0, 1, %, x,v). O

Proposition 3.1 is helpful for obtaining the pdf of rMSN-BS distribution. Let
Y ~ rMSN-BS(¢, X, A, a). From (6), it can be observed that Y|r ~ rMSN(¢,
7713, 771/2)\). Therefore, the density of Y is

Fy:62, X 0) =fan, (y:€,0,2,0.5,a7 %, a7 %)
x Fou (Aly,®);(1-p)/2,s+a %,a7?)
+fon,(¥;6,0,%,-0.5,a7%, a7 %)
X Fou (Aly,®);—(14+p)/2,s+a %,a7%), ()

where © = (§,E7A,Oé), A(ng) = ATS]_l(y - 5)/V 1- ATQ_lAa § = (y -
T (y—¢) and Jam, (5 1, A, 3, K, X, 1) represents the pdf of GHy(u, A, X, k5,4, x).
The mean and covariance matrix of Y, obtained by (6) and the law of iterative
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expectations, are
Ki(a™?)+ Ko(a™? 2
€+ 1(0[ )+ 70(@ ) \/>>\,
K,0'5(0[ 2) T
2
covo(Y) = (140503 (Z+(1—-)A\")
T

+\/§/\ ((1 +0.50%) — (Kl(ijllioz()azvv ,  acR*.

In the univariate case for ¢ = 0 and o2 = 1, without lose of generality, the
skewness and kurtosis of Y are also obtained as follows:

&
=
|

pis — 3papio + 243 pia — dpapis + 63 po — 3ud

Yy = y and Ry = - 37
(p2 — N%)m (p2 — /«L%)2
where
[ Ki(a™?) + Ko(a™?) /i)\
o K05 2) 2 ’
12 = (1+0.5cx ) +A%),

Ky(a™?) + Ki(a™?) 1 2
3 K05 =y ) \/;)\(14—2)\ ),

pa = EY") =2(1+a*+2/3a")(1+ A2

To illustrate the tail behavior and asymmetric properties of the rMSN-BS dis-
tribution, we display the pdf of a univariate rMSN-BS distribution for £ = 0
and 0 = 1 and various values of a and X in Figure 1. It is clearly seen that the
rMSN-BS distribution can produce very strong skewness and extremely heav-
ier tails than the normal distribution. Also, the contour plots of the skewness
and kurtosis of Y in the univariate case are plotted in Figure 2. Observing this
figure, the rMSN-BS distribution has negative skewness for both small values
of a and negative values of A\. Moreover, it can be observed from Table 1 that
the TMSN-BS distribution takes wider ranges of skewness as compared with
the skew t and skew-t-normal distributions in [19] based on univarate case.

Table 1: The ranges of skewness for different values of «

« 0.05 0.10 1 5 10 100

skewness (-2.64,2.64) (-2.62,2.62) (-1.10,1.10) (-0.96,0.96) (-0.93,0.93) (-0.88,0.88)
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4 —— o =1 and A =0
1 — — a=2 and A =5
1 —— o =2 and A =10
) - - -o=3 and A =—5
/’\ - - -o=3 and A =-10

Density

index

Figure 1. The density plots of rMSN-BS distribution for different
values of o and A

skewness kurtosis

Figure 2. The skewness and kurtosis of the rMSN-BS distribution

fysuep

Figure 3. The density and contour plots of the bivariate rMSN-BS
distribution
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Figure 3, furthermore, displays the density graph of the bivariate rMSN-BS

distribution for £ = (0,0), X = ( g g ), A=(-2,3) and « = 1.2.

Theorem 3.2. Let Y ~ rMSN-BS(, X, )\, ).

I. For any A € R9¢4 and b € RY, the ¢-dimensional random vector X =
AY + b is distributed as tMSN-BS(A¢ +b, ASAT A\ a).

II. As a consequence of part (I), if we have partition of Y, &, A and X as

Y. & A1 Y11 X2
Y = = = 2 =
(B) = (a) () == (30 8)
(8)
then Y1 ~ I‘MSN-BS(&L, 23]_17 )\1, Oé) in which Yv]_7 5]_7 A € Rand X441 €
Raxa,

Proof. The proof is easily completed by using Bayes rule and some algebraic
work. [

4. Maximum Likelihood Estimation of the rMSN-
BS Distribution

In this section, we demonstrate how to employ EM-type algorithm for ML
estimation of the rMSN-BS distribution.

4.1 The model and likelihood

Let Y = (Y1,...,Yn) be the n independent random variable from rMSN-BS(¢, ¥, A, a)
and denote v = /7| Xp|. From (3) and (6), the hierarchically representation of
Y is
Yili 7~ Np(§+ M, 133),
Vil ~ TN(0,75;(0,00)), (9)
T; o~ BS(O{7 1),

where TN(p, 02; (a, b)) represents the truncated normal distribution for N(u, o2)
lying within the truncated interval (a,b). Hence, the joint pdf of Yj , 7; and
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7 is given by

(;+1)

+1.p—3 0.5
(2m)p 7 oD

f(yja7j77—j) =

1 e 1 1
X exp {_QTj [(y; =& =25 =7y — €= My)] — ﬁ(’rj + 5 2)} :
(10)
Integrating out ; in (10), we get
2(7']‘ + 1)

f( js ) =
YJ T_] /(27T)P+1Tf_3|2|0'5

1 1 1 —1/2
xexp{—QTjsj —W(Tj—i-Tj—Q)}(I)(Tj A(yy(ﬂ)), (11)

where s; = (y; — &) T Q71 (y; — &). Dividing (10) by (11) gives the conditional
distribution of y; given (Y; =yj, 7j) as

1
o (Tjﬁl/zA(Yja @))

fOlyism) =

-1

X exp {m_:jw(w - AT (y; - 5))2} : (12)

It follows from (12) that the conditional distribution of ; given (Y; =yj, 73)
is

% 1Yy =y5 75~ INQATQ Hy; =€), 15(1 = ATQ7IN);(0,00)).  (13)
Moreover, dividing (10) by (7) yields
foic (13 52,8+ o 2,072) @ (ijl/zA(yy @))
Feu (A(y;;©); (1 - p)/2,85 +a"2,a72)
fara (t;—32,s;+a72,a72) @ (Tfl/zA(yJw @))
Fou (A(y;,0);—(14+p)/2,8i + a2,a72)

f(r ly;) = m;

+ (1 —7Tj) (14)

where s; = (y; — &) T Q 1 (y; — £), and

fGHp (Yy 57 07 27 057 a—2’ a_z)FGH (A(yja ®>7 (1 - P)/2> Sj + O[_27 O[_2)
T = .
f(y_la 57 27 >\a Oé)
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Proposition 4.1.1. Let R, q)(c) = Keta(c)/Ky(c). From the conditional
density (14), the following statements are obtained:

a) The conditional expectation of T; given Y =yj; is
J j

1 0.5
B0 1Y =39 = (575 57)
J

(Ffw(la(lfp)/Q)R((lfp)/Z,l)( 8; + Oz_Q/a)

+ (L= m)wa, iy B/ (ys +a72/a) ),

where
I Fog (A(yj,(a);k—i—hsj—i—a*z,a*z)
(@:5) Fon (A(y;, ©);k,s5 +a=2,a72)

(b) The conditional expectation of Tj_l given' Y =yj is
(1Y =)~ 4
(ijf1,<1fp>/2>R<<1fp>/2771>( sj + 04‘2/04)
+(1- 7Tj)w<—1’7(1+p>/2)1?((1[)71)/2,71)( s+ Oé‘%&))-
(¢) Specific conditional expectation related to function of 7; is
E (Y2 ¢ (Tj_l/QA(yj’ © )

)
Lo A5 0)
)p/4

mj (a2sj +1
V2@ (a2(s; + A2(y;, ©)) + 1)P/*
K_y (VG 7 250) +a2a?)
Kz ( (s + 0‘72)0‘72)FGH (A(y;, ©); 32,85 +a~2,a72)
n (1 —7;) (a®s; + 1)(2+p)/4
V27/a (a2(s; + A%(y;, ©)) + 1)@TP/4
K 2y (/55 + A%(3;,0) + 0 2)a?

K—”Tp( (sj + 04_2)0‘_2)FGH (Ay;, ©); —5 5+ a=2,02)

X

X

2
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d) The conditional expectation of T;7v; given Y =y; is
i 9 J

B(r7'9 1Y =y;) =ATQ M y; - OB (71 | Y = ;)
+V/1-ATQ-1A

Lo (7 A e)

xFE 7; 1/2(1) (Tj_l/2A(yJ'7®))

‘Y:yj

(e) The conditional expectation of Tjﬁ given Y =yj is

E(r7192 1Y =y;) = (AT (y; — ©)°E(r 1 | Y = ;)
+(1-ATQ7 1))
+ATQ TNy - )1 - AT
~1/2
<E |7 1? o (7 "5 0)
o (' Aly;. @)

e

Proof. The proof is straightforward. O

4.2 Parameter estimation via ECM algorithm

To compute the ML estimates of unknown parameters, an extension of the
EM algorithm, the Expectation Conditional Maximization (ECM) algorithm
([30]) is implemented. The ECM algorithm is a straightforward modification
of EM algorithm in which the maximization (M) step is replaced by a se-
quence of computationally simper conditional maximization (CM) steps. Let
y = (¥1,-.-,¥n) be a random sample of size n from the rMSN-BS distribu-
tion, and v = (y1,...,vn) and 7 = (71, ..., Tn) represent the hidden variables in
the model. The complete data log-likelihood function of ® = (¢, X, A, ) given
(y,7,7), omitting the additive constants, is given by

n 1 n 1
ﬂc(g | y7’777—) - — §loga\2| — EZ(TJ + ; _ 2)
j=1 i

—%ZTfl(Yj—E—Mj)Tz_l(yJ' — &= M) (15)
j=1
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The expected value of complete data log-likelihood (15) with respect to the
conditional distribution of the missing values (v, 7) given the observed data y,
an evaluated at 0 = 0% called Q-function, is

. 1 - N
GG W1oga|2| — o > (P i 2
Jj=1

1 . _
—52{ 3(y3, 6, 2) = Wi (v — ) B

— AT iy -+ wiEFATAL, (16)

where the necessary conditional expectations include T(k) (T{l | v, (:)(k))7
k k _

i = B(r; | y.0®), @i} = B(r;y | y.00) and iy = B(r;'57 |

Y, G(k)) that obtain by Proposition 3.1. In summary, the implementation of

the ECM algorithm proceeds as follows:

200 )

E-step: Given © = 6 , compute 7; ; and ka) for j =1,.

CM-step 1: Update a(¥) ,§(k and \®) | by maximizing (16) over «, & and A,
which leads to

n

N D Gz R ) )

Jj=1
o = ~(k ~ (k)3 - ~(k
g(k+1) _ Z(Tj( )yj _ W(lj))\(k))/ Z,rj( )
=1 =1

(k1) — ZA(k) €(k+1)/ iw(k)
j=1

CM-step 2: Update 3 (k) by

- 1 — & - )+ «
$(k+1) = z:l{ A ( )( g(k+1))(yj _ £(k+1))T +W;j)>\(k+1))\(k+1)r
=

_ w(k) P\(k+1)(yj — EOHINT 4 (y é(k+1))5\(k+1)'l'] }
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5. Computational Strategies Related to Imple-
mentation

5.1 Estimation of standard errors

To estimate standard error of the parameter estimation, the information-based
method is exploited. Following [29], the Fisher information matrix can be ap-
proximated by the information matrix

L©y)=> 83, (17)
j=1

where for £.;(©;ycj), the complete-data log-likelihood (15) computed in the
jth individual observation ye; = (¥;,7, 73)s

” ﬁc‘(@;}’c') A

Let 0 = vec(X) denotes a (p(p — 1)) x 1 vector by stacking the column vectors

of 3. Using standard matrix differentiations, the individual score vector (18)
contains the following elements:

; Le;(©;ycj - S N N
Sje = E<J(J)|YJ,@):2 l{j(YJ—f)—Awlj}7

3
o Lej ®§YC' A S N 2 A
Sia = E(](a)\J) |YJ',@) =X 1{ 1j(Yj—§)—/\W2j},
(O:yei . 1 (e e
éj,o’ = E(W |yJ7®) = vec _5{2 1 _E 1T]2 1})’
~ gc' 9;}’c' A 1 1 ~ ~
Sja = E(W IyJ',@) =t 5@+t -2)

As a result, the standard errors of the estimator, @, can be obtained as the
square roots of the diagonal elements of I;1(®ly).

5.2 Initial values

To overcome the sensitivity of EM algorithm to the starting values, we con-
sider initial values based on the straightforward way. Bellow, we summarize
a convenient way of creating suitable initial values for the implementation of
EM-type algorithm to obtain parameter estimates of the rMSN-BS model.
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1. Since the new model contains the normal distribution as a special case,
the initial component skewness vector and « are chosen as A0 = 0, and
&© = 0.1. This may facilitates faster convergence when the underlying
data has heavy tails.

2. Consequently, the initial values for mixing probabilities, location and
scale covariance matrices can be specified as

n

. 1 — . 1 . .
§0==3 vy BO =3 (- M)y - )T
j=1

j=1

5.3 Convergence assessment

The Aitken’s acceleration method ([1]) is adopted in this paper as a conver-
gence tool of the EM algorithm. The Aitken’s acceleration outperforms the
lack of progress criterion and avoids the premature convergence ([28]). Let
a®) = (pk+1) — p(k)) /() — ¢(#=1)) be the Aikten acceleration factor in which
¢(F) denotes the log-likelihood value evaluated at e, Then, the asymptotic
estimate of the log-likelihood at iteration k is calculated as

1

(k+1) _ p(k)
LT =07 + 1 —a®

(ek+1) _ p(R)y,

Now, the EM algorithm can be considered to have converged if eé’;) — () <
€. The desired tolerance e considered in this paper is 107°.

5.4 Model selection

For the sake of compression, two well-known measures based on the penalized
log-likelihood are used. We used the Akaike information criterion (AIC; [2])
and Bayesian information criterion (BIC; [40]) which are obtained by mC(n) —
2l maz- Here, 4, is the maximized log-likelihood, m is the number of free
parameters in the considered model and C(n) = 2 for AIC and C(n) = log(n)
for BIC.

6. An Illustration

In this section, the open/closed book (OCB) dataset is analyzed to illustrate
the performance of the proposed model. The OCB, originally reported by [25]
and subsequently analyzed by [22, 42] among others, includes five proficiency
namely mechanics (mc), vectors (ve), algebra (al), analysis (an), and statistics
(st) tested on n = 88 students. In this example, we focus on a the bivariate
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sample of two variables (vec, sta) to follow rMS-BS distribution since they
exhibit an apparent bimodal asymmetric pattern with some outlying observa-
tions. For comparison purposes, bivariate normal (MVN); bivariate-t (MVT),
bivariate rMSN, bivariate restricted skew-¢ (rMST) distributions are also ap-
plied to model this dataset.

Table 2 provides a summary of model fitting containing the parameter estimates
with associated standard error estimates, and model selection criteria. In light
of these two selection criteria, the results show that the rMSN-BS model out-
performs MVN, MVT, rMSN-BS and rMST distributions. Figure 4 displays
graphical representation of five fitted models. It can be seen that the rMSN-BS
model adapts the shape of the scattering pattern more adequately than the
other candidate models, showing the superiority of rMSN-BS in the capability
of dealing with heterogeneous data.

Table 2: Summary results from fitting various models on the OCB data.

Parameter MVN MVT rMSN rMST rMSN-BS
ML se ML se ML se ML se ML se
& 50.590 3.726 50.658 3.122 64.274  3.055 54.051 1.980 64.466  2.423
& 42.306  3.977 42.086  3.583 37.571  2.941 26.793  2.028 22374 1.239
o011 170.878  9.947 163.196  9.053 74550  8.711 148.066  6.301 143.368  6.431
012 97.886  7.056 94.391  6.720 131.150  7.942 117.033  4.320 139.238  5.390
099 294.371  11.840 284.445  9.421 282.885  9.862 142,924  7.791 152.540  7.930
A1 -3.459  3.569 -4.127  1.066 -9.432  1.445
A2 - - - - 5.817 1.250 11.560  2.160 18.109  2.384
o 0.298 0.089
v - - 8.117 2.350 - - 11.249 2430 - -
00) -722.769 -720.7649 -712.380 -712.802 -708.858
AIC 1455.540 1452.530 1438.716 1441.604 1433.717
BIC 1467.926 1465.394 1456.102 1461.423 1453.536

7. Simulation Study

This section deals with the performance of our proposed distribution and its
computational methodology. In the first simulation, the finite sample proper-
ties of the ML estimator of the rMSN-BS parameters are investigated. In each
replication, a random sample from the rMSN-BS distribution with presumed
parameter values £ = (2,2), A = (2,3), @ = 0.4 and Vech(X) = (2,0.4,1)
is generated for n = 30,50, 100, 200, 500, and 1000. Figure 5 shows one sam-
ple with size 1000. To check performance of the estimates obtained using the
EM algorithm, the parameter estimates of the rMSN-BS distribution are com-
puted. Table 3 presents the Bias and mean squared error (MSE) of the ML
estimators obtained over 500 trials, respectively, by
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Figure 4. Scatter plot of vec and sta with superimposed
contours of various models
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Figure 5. Plot of the generated sample in simulation 1 (left)
and in simulation 2 (right)
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The results from this table show that the Bias and MSE tend to approach zero
by increasing the sample size. This indicate that the obtained estimates based
on the proposed EM algorithm provide good asymptotic properties.

Table 3: Simulation results for assessing the asymptotic properties of
parameter estimates

n measure & & A1 A1 o11 o12 T99 a
30 MSE 1.6729 2.0126 2.1701 2.2914 3.3615 3.2382 3.6019 19650
bias 0.9611 1.3089 2.1937 2.4720 2.6825 2.1706 2.5630 1.7048

50 MSE 0.9627 1.3461 1.4917 1.5345 2.5711 24970 2.7743 1.2018
bias 0.6709 0.8819 1.6130 1.7043 2.0157 1.4380 1.8901 1.0172

100 MSE 0.7400 1.0310 1.1445 1.2991 2.1595 2.1317 2.3369 0.8499
bias 0.4861 0.6252 1.2312 1.1954 1.6810 1.2314 1.3990 0.6979

200 MSE 0.3352 0.6335 0.7467 0.6916 1.4622 1.1793 1.3185 0.4737
bias 0.2295 0.3185 0.7241 0.6893 0.5132 0.6983 0.8694 0.3447

500 MSE 0.0915 0.1172  0.1355 0.1896 0.3301 0.4306 0.3410 0.1419
bias 0.0101 0.0616 0.0910 0.0862 0.0910 0.0862 0.0921 0.0718

1000 MSE 0.0301 0.0475 0.0353 0.0457 0.0978 0.0980 0.0886 0.0368
bias 0.0056 0.0038 0.0158 0.0141 0.0234 0.0126 0.0327 0.0242

The second simulation is conducted to check whether the method of approx-
imating standard error of the rMSN-BS parameters, described in Section 5.1,
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has good asymptotic properties. For each sample size n = 30, 50, 100, 200, 500,
and 1000, the data is generated 500 times from the rMSN-BS distribution with
parameter values indicated in Table 4 (in parentheses). To increase the effect
of tail heaviness on the standard errors, we add 5% of n nosies uniformly gen-
erated over the interval [10, 25] to the each synthetic sample. Therefore, n
becomes 32, 53, 105, 210, 525, and 1050. One sample of size 1000 is plotted
in Figure 5. By fitting the rMSN-BS distribution to the generated data and
estimating their standard errors, we compute the sample standard errors of
parameters (MCSE) and the observed information matrix (A.SE), as measures

of verifying consistency of the standard errors estimates, by

MCSE(6;) =

H. SAMARY, Z. KHODADADI AND H. JAFARPOUR

500

Ze

K2

jor _ 1

1 .
and A.SE(6;) = — Zse(@(])).
500 &

The results of the simulation summarized in Table 4 shows that not only the
values of MCSE and A.SE are decreased by increasing the sample size, they
but also coverage reasonably together.

Table 4: Simulation results for assessing the consistency of standard errors

500

j=1

5)

>0

K2

n measure  £1(0)  &(0)  A(2)  AM(2) 011(25) 012(0.6) 022(2) «(0.5)
30 A.SE 0.9705 1.0120 0.9840 1.2955  2.1190 1.7344  1.8915 0.9610
MCSE  1.2340 1.3179 1.1029 1.4237 2.5367 21052 2.2094 1.1163

50 A.SE 0.8321 0.8609 0.8852 1.1850  1.8750 1.3683  1.5679 0.7930
MCSE  0.9908 0.9763 0.9593 1.2543  2.2049 1.5917  1.7801 0.9648

100 A.SE 0.6552 0.7856 0.8381 0.9101  1.3565 1.1351  1.2257 0.7123
MCSE 0.7856 0.8248 0.8919 0.9924 1.6675 1.2098  1.3630 0.8631

200 A.SE 0.4770 0.5854 0.6662 0.7301  0.6197 0.9314 0.8311 0.5795
MCSE  0.4320 0.5330 0.6273 0.7633  0.7464 0.8546  0.8982 0.6167

500 A.SE 0.2557 0.3138 0.3984 0.4832  0.4498 0.7159  0.6185 0.3502
MCSE  0.2606 0.3375 0.3858 0.5016  0.4665 0.7358  0.6391 0.3773

1000 A.SE 0.0385 0.0724 0.0937 0.1223  0.0935 0.1109  0.1442 0.0507
MCSE 0.0348 0.0798 0.0980 0.1298 0.0978 0.1135  0.1492 0.0572

8. Concluding Remarks

This paper has dealt with the proposing new skew distribution by consider-
ing the BS model for the mixing variable in the scale mixtures of restricted
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skew-normal distribution. Calling rMSN-BS model, some statistical as well as
mathematical properties of the new model have been investigated. By present-
ing a convenient hierarchical representation for the rMSN-BS distribution, we
have developed a feasible EM-type algorithm for parameter estimation. Finally,
we demonstrate our proposed methodology through a real and two simulation
datasets. Numerical results show that the proposed method may perform rea-
sonably well for the experimental data.

The utility of our current approach can be extended to introduce new distribu-
tion based on Lindley model ([33]). In addition, the rMSN-BS distribution can
be used to construct a new finite mixture model for analyzing multimodal and
fat tails datasets [34, 32, 36]. It may also be interesting to propose a model
for clustering right-skewed positive data via fuzzy classification maximum like-
lihood algorithm [18].
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