Some Relations on Noetherian and Boolean Artinian $B L$-algebras

J. Kazemiasl
Shahrekord Branch, Islamic Azad University
F. Khaksar Haghani*
Shahrekord Branch, Islamic Azad University
Sh. Heidarian
Shahrekord Branch, Islamic Azad University

Abstract

In this paper, we derive some new results on Noetherian and Boolean Artinian $B L$-algebras. We further obtain some relations between local and semilocal $B L$-algebras and Boolean Artinian $B L$ algebras.

AMS Subject Classification: 06D99; 08A99; 03G99
Keywords and Phrases: Noetherian $B L$-algebra, Boolean Artinian
$B L$-algebra, prime filters, generated filters, deductive system

1. Introduction

$B L$-algebras have been invented by Hájek [2] in order to provide an algebraic proof of the completeness theorem of "basic logic" ($B L$, for short) arising from the continuous triangular norms, familiar in the fuzzy logic frame-work. $B L$-algebras are the algebraic structures for Hájek [2] basic logic in order to investigate many-valued logic by algebraic

[^0]means. He provided an algebraic counterpart of a propositional logic, $(B L)$, which embodies a fragment common to some of the most important many-valued logics, namely Łukasiewicz Logic, Gödel Logic and Product Logic. This Basic Logic is proposed as the most general manyvalued logic with truth values in interval $[0,1]$ and $B L$-algebras are the corresponding LindenbaumTarski algebras. The language of propositional Hájek basic logic [2] contains the binary connectives o, \Rightarrow and the constant $\overline{0}$. Axioms of $B L$ are given as:
(A1) $(\varphi \Rightarrow \psi) \Rightarrow((\psi \Rightarrow w) \Rightarrow(\varphi \Rightarrow w))$;
(A2) $(\varphi \circ \psi) \Rightarrow \varphi$;
(A3) $(\varphi \circ \psi) \Rightarrow(\psi \circ \varphi)$;
(A4) $(\varphi o(\varphi \Rightarrow \psi)) \Rightarrow(\psi o(\psi \Rightarrow \varphi))$;
(A5a) $(\varphi \Rightarrow(\psi \Rightarrow w)) \Rightarrow((\varphi \circ \psi) \Rightarrow w)$;
(A5b) $((\varphi \circ \psi) \Rightarrow w) \Rightarrow(\varphi \Rightarrow(\psi \Rightarrow w))$;
(A6) $((\varphi \Rightarrow \psi) \Rightarrow w) \Rightarrow((\psi \Rightarrow \varphi) \Rightarrow w) \Rightarrow w)$;
(A7) $\overline{0} \Rightarrow w$.
Apart from their logical interest, $B L$-algebras have important algebraic properties and they have been intensively studied from an algebraic point of view. There has been some recent interest in applying rings theory notions to non-mainstream algebras. The situation is analogous to that of rings theory. However, the details are slightly different although some of the ideas are similar.

Hájek [2] introduced the concepts of filters and prime filters in $B L$ algebras. From logical point of view, filters correspond to sets of provable formula. E. Turunen studied some properties of filters theory, which plays important role in studying logical algebras. He showed how $B L-$ algebras can be studied by deductive systems. Deductive systems correspond to subsets closed with respect to Modus Ponens and they are called filters, too. Also he introduce the notion of Boolean Artinian BLalgebras [12]. Motamed and Moghaderi [5], introduced the notions of Noetherian and Artinian on $B L$-algebras. They obtained some equivalent definitions of Noetherian and Artinian $B L$-algebras. Meng B. L and Xin X. L [6], introduced the co-Noehterian $B L$-algebras.
In this paper, we obtain some new relations between the above notions.

The structure of the paper is as follows:
In Section 2, we recall some definitions and results about $B L$-algebras that we use in the sequel. In Section 3, we recall the notion of Noetherian and Boolean Artinian $B L$-algebras and we derive some results about the relations between them.

2. Preliminaries

In this section, we give some definitions and theorems which are needed in the rest of the paper.

An algebra $(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ of the type $(2,2,2,2,0,0)$ is called a $B L$-algebra if satisfies the following axioms [2]:
($B L 1$) $(A, \wedge, \vee, 0,1)$ is a bounded lattice;
(BL2) $(A, \odot, 1)$ is a commutative monoid;
$(B L 3) \odot$ and \rightarrow form an adjoint pair, i.e., $c \leqslant a \rightarrow b$ if and only if $a \odot c \leqslant b ;$
(BL4) $a \wedge b=a \odot(a \rightarrow b)$;
(BL5) $(a \rightarrow b) \vee(b \rightarrow a)=1$.
For all $a, b, c \in A$. We denote $\bar{x}=x \rightarrow 0$ and $x^{--}=(\bar{x})^{-}$, for all $x \in A$. Most familiar example of a $B L$-algebra is the unit interval $[0,1]$ endowed with the structure induced by a continuous t -norm. In the rest of this paper A, denotes the universe of a $B L$-algebra [2].
A $B L$-algebra is nontrivial if $0 \neq 1$. For any $B L$-algebra A, the deduct $L(A)=(A, \wedge, \vee, 0,1)$ is a bounded distributive lattice. We denote the set of all natural numbers by \mathbb{N} and define $a^{0}=1$ and $a^{n}=a^{n-1} \odot a$, for $n \in \mathbb{N} \backslash\{0\}$. Hájek [2] defined a filter of a $B L$-algebra A to be a non-empty subset F of A such that (i) if a, b $\in F$ implies $a \odot b \in F$, (ii) if $a \in F, a \leqslant b$ then $b \in F$. In each $B L$-algebra A, for every $x, y \in A$, $x \odot y \leqslant x, y[8]$. E. Turunen [7] defined a deductive system of a $B L-$ algebra A to be a non-empty subset D of A such that (i) $1 \in D$, (ii) $x \in D$ and $x \rightarrow y \in D$ imply $y \in D$. The set of all deductive systems of a $B L$-algebra A is denoted by $\mathrm{D}(A)$. A subset F of a $B L$-algebra A is a deductive system of A if and only if F is a filter of $A[7]$. A deductive
system D of $B L$-algebra A is Boolean if, for all $x \in A, x \vee \bar{x} \in D[9]$.
A filter F of a $B L$-algebra A is proper if $F \neq A$. A proper filter P of A is called a prime filter of A if for all $x, y \in \mathrm{~A}, x \vee y \in P$ implies $x \in P$ or $y \in P$. A proper filter P of A is Prime if and only if P can not be expressed as an intersection of two filters properly containing P or equivalently, for all $x, y \in \mathrm{~A}$, either $x \rightarrow y \in P$ or $y \rightarrow x \in P$ [8].
If F, G and P are filters of A, then P is a prime filter of A if and only if $F \cap G \subseteq P$ then $F \subseteq P$ or $G \subseteq P$.

A proper filter M of A is a maximal filter if and only if for any $x \notin M$ there exists $n \in \mathbb{N}$ such that $\left(x^{n}\right)^{-} \in M[7]$. Every maximal filter of A is a prime filter [8].
The set of all filters, prime filters and maximal filters of a $B L$-algebra A are denoted by $\digamma(A), \operatorname{Spec}(A)$ and $\operatorname{Max}(A)$, respectively. For every subset $X \subseteq A$, the smallest filter of A which contains X, i.e., the intersection of all filters $F \in \digamma(A)$ such that $F \supseteq X$, is said to be the filter generated by $X[1]$. The filter of A generated by X will be denoted by $\langle X\rangle$, where $X \subseteq A$, in which $\langle\emptyset\rangle=\{1\}$ and $\langle X\rangle=\left\{a \in A: x_{1} \odot x_{2} \odot \cdots \odot x_{n} \leqslant a\right.$, for some $n \in \mathbb{N}$ and $\left.x_{1}, x_{2}, \ldots, x_{n} \in X\right\}[8]$. A filter $F \in \digamma(A)$ is called finitely generated, if $F=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$, for some $x_{1}, \ldots, x_{n} \in \mathrm{~A}$ and $n \in \mathbb{N}$. For $F \in \digamma(A)$ and $x \in A \backslash F, F\langle x\rangle=\langle F \bigcup\{x\}\rangle$ and so $F\langle x\rangle=\left\{a \in A: a \geqslant f \odot x^{n}\right.$, for some $f \in F$, and $\left.n \geqslant 1\right\}[8]$.
Definition 2.1. ([5]) Let A be a $B L$-algebra and F be a filter of A. A prime filter P of A, is called a minimal prime filter of F if $F \subseteq P$ and if further, there exists $Q \in \operatorname{Spec}(A)$ such that $F \subseteq Q \subseteq P$, then $P=Q$. The set of all minimal prime filter of $\{1\}$, is denoted by $\operatorname{Min}(A)$.

Definition 2.2. ([5]) A BL-algebra A is called Noetherian (Artinian), if for every increasing (decreasing) chain of its filters $F_{1} \subseteq F_{2} \subseteq \ldots$ $\left(F_{1} \supseteq F_{2} \supseteq \ldots\right)$, there exists $n \in \mathbb{N}$ such that $F_{i}=F_{n}$, for all $i \geqslant n$.
Theorem 2.3. ([5]) Let A be a BL-algebra. Then A is Noetherian $B L$ algebra if and only if every filter of A is finitely generated.

Definition 2.4. ([2]) Let A be a $B L$-algebra. A non-empty subset $I \subseteq A$ is called an ideal of A, if the following conditions are satisfied:
(i) $0 \in I$,
(ii) If $x,\left(x^{-} \rightarrow y^{-}\right)^{-} \in I$ then $y \in I$.

Definition 2.5. ([6]) A BL-algebra A is said to be co-Noetherian with respect to ideals if every ideal of A is finitely generated. $A B L$-algebra A is satisfies the ascending chain condition with respect to its ideals if for every ascending chain sequence $I_{1} \subseteq I_{2} \subseteq \ldots$ of ideals of A, there exists $n \in \mathbb{N}$ such that $I_{i}=I_{n}$, for all $i \geqslant n$.

Remark 2.6. ([8]) Let F and G be two filters of A such that $F \subseteq G$. It is evident that $\frac{G}{F}$ is a filter of $\frac{A}{F}$. Since G is a filter, then it can be easily shown that $\frac{a}{F} \in \frac{G}{F}$ if and only if $a \in G$. Moreover, $\digamma\left(\frac{A}{F}\right)=\left\{\frac{H}{F}\right.$: $H \in \digamma(A), F \subseteq H\}$.

Definition 2.7. ([7]) A BL-algebra A is called locally finite if all nonunit elements are of finite order, i.e., for any non-unit element x of A, $x^{n}=0$ for some $n \geqslant 1$. Obviously, the only proper deductive system of a locally finite $B L$-algebra is $\{1\}$, thus, $M(A)=\{1\}$, where $M(A)=$ $\bigcap\{M: M$ is a maximal deductive system of $A\}$.
From [7], a $B L$-algebra A is semisimple if $M(A)=\{1\}$. In [7], it is also proved that locally finite $B L$-algebras and locally finite $M V$-algebras are coincide. Moreover, for any $B L$-algebras A, M is a maximal deductive system of A if and only if $\frac{A}{M}$ is a locally finite $B L$-algebra if and only if for any $x \notin M,\left(x^{n}\right)^{-} \in M$ for some $n \geqslant 1$. E. Turunen [9], defined a $B L$-algebra A is local if it has a unique maximal deductive system. He proved that a $B L$-algebra A is local if and only if the unique maximal deductive system of A is equal to $\left\{x \in A: x^{n}>0\right.$ for all $\left.n \geqslant 1\right\}$.

From [11], Given two locally finite $B L$-algebras A and B, a product $B L$-algebra $A \times B$ contains two disjoint descending chains of deductive systems, namely $A \times B \supseteq A \times\{1\} \supseteq\{(1,1)\}$ and $A \times B \supseteq\{1\} \times B \supseteq$ $\{(1,1)\}$. Clearly, $A \times B$ is a semisimple $B L$-algebra and both maximal deductive system $A \times\{1\}$ and $\{1\} \times B$ are disjoint. More generally, given
n locally finite $B L$-algebras $A_{1}, A_{2}, A_{3}, \ldots A_{n}$, a product $B L$-algebra $\prod_{k=1}^{n} A_{k}$ is semisimple, contains $2^{n}-1$ proper deductive system and n disjoint maximal deductive system $M_{k}=A_{1} \times \cdots \times\{1\} \times \cdots \times A_{n}$, $k=1,2, \ldots, n$. Also, any properly descending chain of deductive systems is finite.

Proposition 2.8. ([11]) Let A be a BL-algebra and $M_{1}, M_{2}, M_{3}, \ldots, M_{n}$ be n maximal deductive systems, (not necessarily disjoint), of A. Then the product $B L$-algebra $\mathcal{A}=\prod_{k=1}^{n} A / M_{k}$ is semisimple, contains $2^{n}-$ 1 proper deductive systems, and n disjoint maximal deductive systems further any properly descending chain of deductive system of \mathcal{A} is finite.

Definition 2.9. ([11]) $A B L$-algebra A is semilocal if it contains only finite many disjoint maximal deductive systems.

Definition 2.10. ([11]) $A B L$-algebra A is Boolean Artinian if, any properly descending chain of Boolean deductive systems is finite.

Definition 2.11. ([6]) Let X be a subset of a BL-algebra A. The least ideal containing X in A is called the ideal generated by X and denoted by $(X]$. If $X=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ then $(X]$ is denoted by $\left(a_{1}, a_{2}, \ldots, a_{n}\right]$ instead of $\left(\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right]$. An ideal I of A is said to be finitely generated if there exist $a_{1}, a_{2}, \ldots, a_{n} \in A$ such that $I=\left(a_{1}, a_{2}, \ldots, a_{n}\right]$.

Proposition 2.12. ([6]) Let A be a $B L$-algebra. Then for any $x_{1}, \ldots, x_{n} \in$ A and $n \in \mathbb{N},\left(\left(x_{1}\right] \cup\left(x_{2}\right] \cup \cdots \cup\left(x_{n}\right]\right]=\left(\left(\bar{x}_{1} \odot \bar{x}_{2} \odot \cdots \odot \bar{x}_{n}\right)^{-}\right]$.

Definition 2.13. ([12]) Let A be a $B L$-algebra. If I is an ideals of A, $I=(x]$ where $x \in A$, then I is called a principal ideal of A.

Definition 2.14. ([8]) Let A and B be two BL-algebras. A map f : $A \longrightarrow B$ defined on A, is called a $B L$-homomorphism if, for all $x, y \in$ $A, f(x \rightarrow y)=f(x) \rightarrow f(y), f(x \odot y)=f(x) \odot f(y)$ and $f\left(0_{A}\right)=$ 0_{B}. Also, we define $\operatorname{ker}(f)=\{a \in A: f(a)=1\}$ and $\operatorname{Im}(f)=\{f(a):$ $a \in A\}$.

Theorem 2.15. ([4]) Let X be a subset of A. Then $\langle X\rangle=\{a \in A$: $\left(x_{1} \odot x_{2} \odot \cdots \odot x_{n}\right) \rightarrow a=1$, for some $n \in \mathbb{N}$ and $\left.x_{1}, x_{2}, \ldots, x_{n} \in X\right\}$, where $\langle X\rangle$ is the filter of A generated by X.

Theorem 2.16. ([8]) A subset F of a BL-algebra A is a deductive system of A if and only if F is a filter of A.

Theorem 2.17. ([3]) Let A be a nontrivial BL-algebra, $X \subseteq A$ and $D(X)=\{P \in \operatorname{Spec}(A): X \nsubseteq P\}$. Then the following hold:
(i) $X \subseteq Y \subseteq A$ implies $D(X) \subseteq D(Y) \subseteq \operatorname{Spec}(A)$;
(ii) $D(\{0\})=\operatorname{Spec}(A)$ and $D(\emptyset)=E(\{1\})=\emptyset$;
(iii) $D(X)=S p e c(A)$ if and only if $A=\langle X\rangle$;
(iv) $D(X)=\emptyset$ if and only if $X=\emptyset$ or $X=\{1\}$;
(v) If $\left\{X_{i}\right\}_{i \in I}$ is any family of subsets of A, then $D\left(\bigcup_{i \in I} X_{i}\right)=\bigcap_{i \in I} D\left(X_{i}\right)$;
(vi) $D(X)=D\langle X\rangle$;
(vii) $D(X) \bigcup D(Y)=D(\langle X\rangle \bigcup\langle Y\rangle)$;
(viii) If $X, Y \subseteq A$, then $\langle X\rangle=\langle Y\rangle$ if and only if $D(X)=D(Y)$;
(ix) If F, H are filters of A, then $F=H$ if and only if $D(F)=D(H)$.

Theorem 2.18. ([11]) Let $M_{1}, M_{2}, M_{3}, \ldots, M_{n}$ be n maximal deductive systems of a $B L$-algebra A and $\mathcal{A}=\prod_{i=1}^{n} A / M_{i}$ be the product $B L$-algebra. Then a map $h: A \longrightarrow \mathcal{A}$ defined, for all $a \in A$, by $h(a)=\left(a / M_{1}, a / M_{2}, \ldots, a / M_{n}\right)$ is an onto BL-homomorphism such that $h(a)=1_{\mathcal{A}}$ if and only if $a \equiv 1 \bmod M_{i}$, for all $i=1,2, \ldots, n$ where, for $x, y \in A, x \equiv y \bmod D$ iff $(x \rightarrow y) \odot(y \rightarrow x) \in D$. Thus $A / \bigcap_{i=1}^{n} M_{i}$ is isomorphic to $\mathcal{A}=\prod_{i=1}^{n} A / M_{i}$.

3. Some Results on Noetherian and Boolean Artinian $B L$-Algebras

In this section, we derive some new results on Noetherian, semilocal, local and Boolean Artinian $B L$-algebras.

Lemma 3.1. Let A be a $B L$-algebra and $F \in \digamma(A)$. If F is generated by a finite set of generators, then F is generated by an element.

Proof. If F is generated by $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, for some $x_{1}, x_{2}, \ldots, x_{n} \in A$, then F is the smallest filter containing, $x_{1}, x_{2}, \ldots, x_{n}$. We claim that F is generated by $x_{1} \odot x_{2} \odot \cdots \odot x_{n}$. It is enough to show that F is the smallest filter of A, which contains $x_{1} \odot x_{2} \odot \cdots \odot x_{n}$. Assume on the contrary that F is not the smallest filter of A with the above condition. Then,
there exists a filter G of A which contains $x_{1} \odot x_{2} \odot \cdots \odot x_{n}$ and $G \subset F$, so $x_{1} \odot\left(x_{2} \odot \cdots \odot x_{n}\right) \in G$. Since $x_{1} \odot\left(x_{2} \odot \cdots \odot x_{n}\right) \leqslant x_{1}$, and $x_{1} \odot\left(x_{2} \odot \cdots \odot x_{n}\right) \leqslant\left(x_{2} \odot \cdots \odot x_{n}\right)$ and G is a filter, so $x_{1} \in G$ and $\left(x_{2} \odot x_{3} \odot \cdots \odot x_{n}\right)=x_{2} \odot\left(x_{3} \odot \cdots \odot x_{n}\right) \in G$. Therefore, $x_{1} \in G$, $x_{2} \in G$ and $x_{3} \odot \cdots \odot x_{n} \in G$. Continuing this procedure, we conclude $x_{1}, x_{2}, \ldots, x_{n} \in G$, which is a contradiction. Thus, F is the smallest filter of A such that containing all x_{i} for all $1 \leqslant i \leqslant n$.

Theorem 3.2. Let A be a $B L$-algebra and $A \neq \emptyset$. Then $\operatorname{Spec}(A)$ has minimal element with respect to inclusion.

Proof. Since $A \neq \emptyset$, so $\operatorname{Spec}(A) \neq \emptyset$. We consider $(\operatorname{Spec}(A), \supseteq)$ and suppose $\left\{P_{i}\right\}$ be a chain in $(\operatorname{Spec}(A), \supseteq)$. Put $P=\bigcap_{i} P_{i}$. Since, $1 \in$ P, so $P \neq \emptyset$ and we conclude that P is a filter of A. We prove P is prime. Let $a \vee b \in P$ and $a \notin P, b \notin P$. Then there exist $i, j \in \mathbb{N}, a \notin P_{i}$, $b \notin P_{j}$. Since $\left\{P_{i}\right\}$ is a chain, so $P_{i} \supseteq P_{j}$, and $a \notin P_{j}$. Therefore, $a \vee b \notin P_{j}$ and $a \vee b \notin P=\bigcap_{i} P_{i}$, which is a contradiction, so P is prime and $\operatorname{Spec}(A)$ has a minimal element with respect to inclusion.

Corollary 3.3. Let A be a BL-algebra. If A satisfy the ascending chain condition on finitely generated filters, then A is a Noetherian BL-algebra.

Proof. Put $F=\left\{F_{i} \subseteq A: F_{i}\right.$ is finitely generated filter of $\left.A\right\}$. We prove that F has a maximal element. Clearly $\langle 1\rangle \in F$, then $F \neq \emptyset$. We show that F has a maximal element. Let $F_{1} \in F$, if F_{1} is maximal of F, it is obvious, otherwise, there exists $F_{2} \in F, F_{1} \neq F_{2}$ such that $F_{1} \subset F_{2}$. Now if F_{2} is maximal element of F, we are done. But if F_{2} is not maximal element of F, then there exist $F_{3} \in F, F_{3} \neq F_{2}$ and $F_{1} \subset F_{2} \subset F_{3}$. Continuing this procedure, we have $F_{1} \subset F_{2} \subset F_{3} \subset \cdots \subset$ $F_{n} \subset \ldots$. Since $F_{i} \in F$, for all $i \in \mathbb{N}$, so every F_{i} is finitely generated filter therefore, there exist $\mathrm{s} n \in \mathbb{N}$ such that $F_{i}=F_{n}$, for all $i \geqslant n$. Hence F_{n} is a maximal element of F. To prove that A is Noetherian, it is sufficient to show that every filter of A, is finitely generated. Let G be an arbitrary filter of A, then we prove that G is finitely generated. Let $H=\left\{F_{i} \subseteq G: F_{i}\right.$ be a finitely generated filter of $\left.A\right\}$. For every $x \in G$, we have, $\langle x\rangle \subset G$, so $H \neq \emptyset$. According to the previous argument, H has a maximal element like F_{1}. We prove $F_{1}=G$ otherwise, if $F_{1} \neq G$,
since $F_{1} \in H$, so $F_{1} \subset G$ and there exists $x \in G-F_{1}$. Since F_{1} is finitely generated, then $F_{1}=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$, for some $x_{1}, x_{2}, \ldots, x_{n} \in A$. Thus $F_{1} \subset F_{2}=\left\langle x_{1}, x_{2}, \ldots, x_{n}, x\right\rangle \subset G$, so $F_{2} \in H$ and $F_{1} \subset F_{2}$, which is a contradiction. Hence G is a finitely generated filter of A and by Theorem 2.3, A is a Noetherian $B L$-algebra.

Theorem 3.4. Let A be a $B L$-algebra. Then A is a semilocal if and only if $A / M(A)$ is a Boolean Artinian BL-algebra.

Proof. Let A be a semilocal $B L$-algebra. We show that by Definition 2.10, any properly descending chain of Boolean deductive system in $A / M(A)$ is finite. Suppose $M_{1}, M_{2}, M_{3}, \ldots, M_{n}$ be the n disjoint maximal deductive systems of A. Then by Definition $2.7, M(A)=\cap\{M$: M is a maximal deductive system of $A\}$, i.e., $M(A)=\bigcap_{k=1}^{n} M_{k}$. By Proposition 2.18, $A / M(A)$ is isomorphic to $\mathcal{A}=\prod_{k=1}^{n} A / M_{k}$. Also by Proposition 2.8, every properly descending chain of deductive system of \mathcal{A} is finite. Thus $A / M(A)$ is Boolean Artinian.
Conversely, Let $A / M(A)$ be Boolean Artinian, then any properly descending chain of deductive system in $A / M(A)$ is finite. So any properly descending chain of deductive system of A is finite, thus, A is a semilocal $B L$-algebra. If A contains infinite many maximal deductive system like $M_{1}, M_{2}, M_{3}, \ldots$, then $M_{1} \supseteq\left(M_{1} \cap M_{2}\right) \supseteq\left(M_{1} \cap M_{2} \cap M_{3}\right) \supseteq \ldots$, is an infinite properly descending chain of deductive system generating an infinite properly descending chain of deductive system $M_{1} / M(A) \supseteq$ $\left(M_{1} \cap M_{2}\right) / M(A) \supseteq\left(M_{1} \cap M_{2} \cap M_{3}\right) / M(A) \supseteq \ldots$, of deductive system into $A / M(A)$, this is a contradiction. Since $A / M(A)$ is Boolean Artinian, so A contains only finite many disjoint maximal deductive system, i.e., A is a semilocal $B L$-algebra.

By Theorem 3.4, the following conditions are equivalent:
Corollary 3.5. Let A be a BL-algebra. Then the following conditions are equivalent:
(i) A is a semilocal and A has the n disjoint maximal deductive systems;
(ii) $A / M(A)$ is Boolean Artinian;
(iii) $A / M(A)$ is a semilocal BL-algebra.

Proof. $(i) \Rightarrow(i i)$ Let A be a semilocal and A has the n disjoint maximal deductive systems. Then, by Theorem 3.4, $A / M(A)$ is Boolean Artinian.
$(i i) \Rightarrow(i)$ Let $A / M(A)$ be Boolean Artinian. Then, by Theorem 3.4, A is a semilocal $B L$-algebra and by Definition 2.9, A has the n disjoint maximal deductive systems.
$(i) \Rightarrow($ iii $)$ Let A be a semilocal and A has the n disjoint maximal deductive systems. Suppose $M_{1}, M_{2}, M_{3}, \ldots, M_{n}$ be the n disjoint maximal deductive systems of A. Then by Definition $2.7, M(A)=\cap\{M: M$ is a maximal deductive system of $A\}$, i.e., $M(A)=\bigcap_{k=1}^{n} M_{k}$. By Proposition 2.18, $A / M(A)$ is isomorphic to $\mathcal{A}=\prod_{k=1}^{n} A / M_{k}$. Also by Proposition 2.8 , every properly descending chain of deductive systems of \mathcal{A} is finite. Thus $A / M(A)$ is a semilocal $B L$-algebra.
$($ iii $) \Rightarrow($ ii $)$ Let $A / M(A)$ be a semilocal $B L$-algebra. Suppose $M_{1} / M(A) \supseteq$ $M_{2} / M(A) \supseteq M_{3} / M(A) \supseteq \ldots$, be properly descending chain of deductive system of a semilocal $B L$-algebra $A / M(A)$ in which $M_{1}, M_{2}, M_{3}, \ldots$, are maximal deductive systems of A. Since $A / M(A)$ is a semilocal, so it contains only finite many disjoint maximal deductive systems. Hence for some $n \geqslant 1, M_{n} / M(A)=M_{n+1} / M(A)$. Thus $A / M(A)$ is a Boolean Artinian $B L$-algebra.

Theorem 3.6. Let A be a $B L$-algebra and $A \neq \emptyset$. Then the set of prime ideals of A has minimal element with respect to inclusion.

Proof. It is similar to proof of Theorem 3.2.
Theorem 3.7. Let A be a BL-algebra. Then every finitely generated ideal in A is principal.

Proof. Let F be a finitely generated ideal of A, then $F=\left(x_{1}, \ldots, x_{n}\right]$ for some $x_{1}, \ldots, x_{n} \in A$. By induction on n, we complete the proof. If $n=1$, the claim is true by hypothesis. Now assume it is true for $n=k$ and set $\left(x_{1}, \ldots, x_{n}\right]=(x]$. Let $n=k+1$ then $\left(x_{1}, \ldots, x_{k}, x_{k+1}\right] \subseteq\left((x] \cup\left(x_{k+1}\right]\right]$, by Proposition 2.12, we have $\left((x] \cup\left(x_{k+1}\right]\right]=\left(\left(\bar{x} \odot \bar{x}_{k+1}\right)^{-}\right]$.

Conversely, since $(x],\left(x_{k+1}\right] \subseteq\left(x_{1},, x_{k}, x_{k+1}\right]$, then $\left(\left(\bar{x} \odot \bar{x}_{k+1}\right)^{-}\right]=(x] \cup$ $\left.\left(x_{k+1}\right]\right] \subseteq\left(x_{1}, \ldots, x_{k}, x_{k+1}\right]$, so $\left(x_{1}, \ldots, x_{k}, x_{k+1}\right]=\left(\left(\bar{x} \odot \bar{x}_{k+1}^{-}\right)^{-}\right]$is a principal ideal of A, and the claim holds for all $n \in \mathbb{N}$.

Theorem 3.8. If Every ideal of $B L$-algebra A is principal, then A is a co-Noetherian BL-algebra.
Proof. Let $I_{1} \subseteq I_{2} \subseteq \ldots \subseteq I_{n} \subseteq \ldots$, be an increasing chain of ideals of A. Put $I=I_{1} \cup I_{2} \cup \ldots$, it is clear that I is an ideal of A. By hypothesis $I=(x]$ for some $x \in A$. So there exists $n \in \mathbb{N}$ such that $x \in I_{n}$. Therefore, $I_{i}=I_{n}$, for all $i \geqslant n$. Hence A is a co-Noetherian $B L$-algebra.

Proposition 3.9. If A is a Noetherian BL-algebra. Then $\left(\operatorname{Spec}(A), T_{A}\right)$ is a Noetherian topological space, where $D(F)=\{P \in \operatorname{Spec}(A): F \nsubseteq P\}$ and $T_{A}=\{D(F): F \in \digamma(A)\}$.

Proof. From [3], we deduce, $T_{A}=\{D(F): F \in \digamma(A)\}$ is a topological space. Let $F_{1} \subseteq F_{2} \subseteq \ldots$, be a chain of filters of A. By Theorem $2.17(i)$ clearly, $D\left(F_{1}\right) \subseteq D\left(F_{2}\right) \subseteq \ldots$, is a chain of T_{A}. Since A is Noetherian, so there exists $i \in \mathbb{N}$, such that for all $n \geqslant i F_{i}=F_{n}$. Then by Theorem $2.17(i x), D\left(F_{i}\right)=D\left(F_{n}\right)$, for all $n \geqslant i$ and hence $\left(\operatorname{Spec}(A), T_{A}\right)$ is Noetherian topological space.

Proposition 3.10. Let A be a Boolean Artinian BL-algebra, B be a $B L$-algebra and $f: A \longrightarrow B$ be an onto BL-homomorphism. Then $f(A)=B$ is a Boolean Artinian BL-algebra.
Proof. It is easy to see that for any deductive system D of $B, f^{-1}(D)$ is a deductive system of A. Let $D_{1} \supsetneq D_{2} \supsetneq \cdots \supsetneq D_{n} \supsetneq \ldots$, be a properly descending chain of Boolean deductive systems of B, then $f^{-1}\left(D_{i}\right), i \in \mathbb{N}$ are Boolean deductive systems of A. Since f is onto, $f^{-1}\left(D_{1}\right) \supsetneq f^{-1}\left(D_{2}\right) \supsetneq \cdots \supsetneq f^{-1}\left(D_{n}\right) \supsetneq \ldots$, is a properly descending chain of Boolean deductive system of A. By hypothesis, A is Boolean Artinian, then there exists a $n \in \mathbb{N}$ such that, $f^{-1}\left(D_{i}\right)=f^{-1}\left(D_{n}\right)$, for all $i \geqslant n$. Since f is an onto $B L$-homomorphism, so we get $f\left(f^{-1}\left(D_{i}\right)\right)=$ $f\left(f^{-1}\left(D_{n}\right)\right)$ and $D_{i}=D_{n}$, for all $i \geqslant n$. Thus B is a Boolean Artinian $B L$-algebra.

Proposition 3.11. Let A be a Boolean Artinian $B L$-algebra and f : $A \longrightarrow A$ be a one to one BL-homomorphism. Then f is an onto $B L$ homomorphism.

Proof. Suppose f is not an onto $B L$-homomorphism of $B L$-algebras, i.e., $A \supsetneq f(A)$. Since f is one to one, so $f(A) \supsetneq f^{2}(A)$ and hence $f^{n-1}(A) \supsetneq f^{n}(A)$ for all $n \geqslant 2$. This means that $A \supsetneq f(A) \supsetneq f^{2}(A) \supsetneq$ $\cdots \supsetneq f^{n-1}(A) \supsetneq f^{n}(A) \supsetneq \ldots$, is a properly descending chain of Boolean deductive systems of A. This chain is not stationary, because if there exists $k \in \mathbb{N}$ such that $f^{k+1}(A)=f^{k}(A)$, then by the injectivity of f, there exists a map $g: A \longrightarrow A, g(f(A))=I_{A}$, thus $g\left(f^{k+1}(A)\right)=$ $g\left(f^{k}(A)\right)$, i.e., $f^{k}(A)=f^{k-1}(A)$, by continuing this procedure, we get, $A=f(A)$. This is a contradiction, hence $A=f(A)$ and f is an onto $B L$-homomorphism.

Proposition 3.12. Let A be a Boolean Artinian $B L$-algebra and D be a deductive system of A. Then $\frac{A}{D}$ is a Boolean Artinian BL-algebra.
Proof. Let $\frac{D_{1}}{D} \supsetneq \frac{D_{2}}{D} \supsetneq \cdots \supsetneq \frac{D_{n}}{D} \supsetneq \cdots$, be a properly descending chain of Boolean deductive system of $\frac{A}{D}$. Then $D_{1} \supsetneq D_{2} \supsetneq \cdots \supsetneq D_{n} \supsetneq \ldots$, is a properly descending chain of Boolean deductive system of A. Since A is a Boolean Artinian $B L$-algebra, there exists a $n \in \mathbb{N}$ such that for all $i \geqslant n, D_{i}=D_{n}$, so for all $i \geqslant n, \frac{D_{i}}{D}=\frac{D_{n}}{D}$. Thus $\frac{A}{D}$ is Boolean Artinian.

Proposition 3.13. Let A be a $B L$-algebra. Then A is a Boolean Artinian BL-algebra if and only if every non-empty set of deductive systems of A has a minimal element.

Proof. Let A be a Boolean Artinian $B L$-algebra and G be a nonempty set of deductive systems of A that does not have a minimal element. There exists a $D_{1} \in G$, since G is a non-empty set. Now as G does not have a minimal element, there exists $D_{2} \in G$ such that $D_{1} \supsetneq D_{2}$. Continuing this method, we have $D_{1} \supsetneq D_{2} \supsetneq D_{3} \supsetneq \ldots$, which is a properly descending chain of Boolean deductive systems of A. This chain is not stationary, so which is a contradiction. Thus G has a minimal element.

Conversely, suppose $D_{1} \supsetneq D_{2} \supsetneq D_{3} \supsetneq \ldots$, is a properly descending chain of Boolean deductive systems of A. Put $G=\left\{D_{i}: i \in \mathbb{N}\right\}$. Since
G is a non-empty set, G has a minimal element, like D_{n}. Hence for all $i \geqslant n, D_{i}=D_{n}$ and A is a Boolean Artinian $B L$-algebra.

Proposition 3.14. Let A be a Boolean Artinian BL-algebra. Then the set of all maximal deductive systems of A is finite.

Proof. Put $G=\{D \in \mathrm{D}(A): D$ is the intersection of finitely many maximal deductive systems of $A\}$. If $\operatorname{Max}(A)$ is a non-empty set, then G is also a non-empty set. Thus by Proposition $3.13, G$ has a minimal element D_{1}. So there exist $M_{1}, M_{2}, \ldots, M_{n}$ of the set of all maximal deductive systems of A such that $D_{1}=M_{1} \cap M_{2} \cap \cdots \cap M_{n}$. Suppose M is an element of the set of all maximal deductive systems of A. Then $M \cap D_{1} \subseteq D_{1}, M \cap D_{1}=M \cap M_{1} \cap M_{2} \cap \cdots \cap M_{n} \in G$ and D_{1} is a minimal element of G, so $M \cap D_{1}=D_{1}$, Hence $D_{1}=M_{1} \cap M_{2} \cap$ $\cdots \cap M_{n} \subseteq M$. Since any deductive system is a filter and every maximal filters is prime, so M is in $\operatorname{Spec}(A)$, thus there exists $i \in \mathbb{N}$, such that $M_{i} \subseteq M$. Now as M, M_{i} are elements of the set of all maximal deductive systems of A, we get $M_{i}=M$. Hence the set of all maximal deductive systems of A is finite.

Proposition 3.15. Let A and B be two local $B L$-algebras and f : $A \longrightarrow B$ be a $B L$-homomorphism. Then $f(A)$ is a Boolean Artinian $B L$-algebra.

Proof. First we show that A is a Boolean Artinian $B L$-algebra. Suppose $D_{1} \supseteq D_{2} \supseteq \cdots \supseteq D_{n} \supseteq \ldots$, be a properly descending chain of Boolean deductive system of a local $B L$-algebra A. We claim that, there exists a $n \in \mathbb{N}$ such that for all $i \geqslant n, D_{i}=D_{n}$. It is clear that, $D_{1} \supseteq D_{2} \supseteq \cdots \supseteq D_{n} \supseteq \ldots$, generates a properly descending chain $\left\langle D_{1} \cup M(A)\right\rangle / M(A) \supseteq\left\langle D_{2} \cup M(A)\right\rangle / M(A) \supseteq \ldots$, of deductive system in $A / M(A)$, where $M(A)=\bigcap\{M: M$ is a maximal deductive system of $A\}$. Since A is a local $B L$-algebra, so $A / M(A)$ is semilocal and for some $i \geqslant n$, we have $\left\langle D_{i} \cup M(A)\right\rangle / M(A)=\left\langle D_{n} \cup M(A)\right\rangle / M(A)$. We show that $D_{i}=D_{n}$. Suppose $a \in D_{i}$, then $a \in D_{i} \cup M(A) \subseteq\left\langle D_{i} \cup M(A)\right\rangle$ and $a \in\left\langle D_{i} \cup M(A)\right\rangle=\left\langle D_{n} \cup M(A)\right\rangle, a \in\left\langle D_{n} \cup M(A)\right\rangle$, so for some $b \in D_{n}$ and $c \in M(A)$, we have $b \odot c \leqslant a$. Thus $b \leqslant c \rightarrow a$ and since $b \in D_{n}, D_{n}$ is a deductive system, hence $c \rightarrow a \in D_{n}$. Since
$M(A)$ is a properly deductive system, $c \in M(A)$, and by Definition 2.7, $M(A)=\left\{x \in A: x^{n}>0\right.$ for all $\left.n \geqslant 1\right\}$, so $\bar{c} \notin M(A),(\bar{c})^{k}=0$, for some $k \geqslant 1$. Since D_{n} is Boolean, then $c \vee \bar{c} \in D_{n}$, thus $(c \vee \bar{c})^{k} \in D_{n}$ and $c \vee 0=c,(\mathrm{c} \vee 0)^{k}=c^{k}$, so $c^{k}=(\mathrm{c} \vee \bar{c})^{k}$, i.e., $c^{k} \in D_{n}$. We know that $c^{k} \leqslant c$ implies $c \rightarrow a \leqslant c^{k} \rightarrow a$, therefore, from $c \rightarrow a \in D_{n}$, We conclude that $a \in D_{n}$, i.e., $D_{i}=D_{n}$, for all $i \geqslant n$ and A is Boolean Artinian. Since B is a local $B L$-algebra, so B is Boolean Artinian, and by Proposition 3.10, since A and B are Boolean Artinian, so $f(A)$ is a Boolean Artinian $B L$-algebra.

Corollary 3.16. If A is a local $B L$-algebra and $f: A \longrightarrow A$ be a one to one BL-homomorphism. Then f is an onto $B L$-homomorphism.

Proof. Since A is local $B L$-algebra, so by Proposition $3.15, A$ is also Boolean Artinian. Thus by Proposition 3.11, f is an onto $B L$-homomorphism.

Corollary 3.17. Let A and B be two $B L$-algebra and $f: A \longrightarrow B$ be an onto $B L$-homomorphism. If A is a local BL-algebra. Then B is a Boolean Artinian BL-algebra.

Proof. Since A is a local $B L$-algebra, so by Proposition $3.15, A$ is also Boolean Artinian, and by Proposition 3.10, B is a Boolean Artinian $B L$-algebra.

Corollary 3.18. Let A be a local BL-algebra and D be a deductive system of A. Then $\frac{A}{D}$ is a Boolean Artinian BL-algebra.

Proof. Since A is a local $B L$-algebra, so by Proposition $3.15, A$ is Boolean Artinian and by Proposition 3.12, $\frac{A}{D}$ is a Boolean Artinian $B L$-algebra.

Corollary 3.19. Let A be a local BL-algebra. Then every non-empty set of deductive systems of A has a minimal element.

Proof. Since A is local $B L$-algebra, so by Proposition 3.15, A is Boolean Artinian, and by Proposition 3.13, A is a Boolean Artinian $B L$-algebra if and only if every non-empty set of deductive systems of A has a minimal element.

Corollary 3.20. Let A be a local BL-algebra. Then the set of all maximal deductive systems of A is finite.

Proof. Since A is local $B L$-algebra, so by Proposition 3.15, A is Boolean Artinian and by Proposition 3.14, the set of all maximal deductive systems of A is finite.

Proposition 3.21. Let A and B be two local BL-algebras and $h: A \longrightarrow$ B be an one to one $B L$-homomorphism. If $\left\langle h\left(D_{1}\right)\right\rangle=\left\langle h\left(D_{2}\right)\right\rangle$, then $D_{1}=D_{2}$, for all deductive systems D_{1}, D_{2} of A.

Proof. Let D_{1} and D_{2} be two deductive systems of A and $\left\langle h\left(D_{1}\right)\right\rangle=$ $\left\langle h\left(D_{2}\right)\right\rangle$. Then for any $x \in D_{1}, h(x) \in\left\langle h\left(D_{1}\right)\right\rangle=\left\langle h\left(D_{2}\right)\right\rangle$, by Theorem 2.15 , there exists $n \in \mathbb{N}$ such that $\left(h\left(x_{1}\right) \odot h\left(x_{2}\right) \odot \cdots \odot h\left(x_{n}\right)\right) \rightarrow h(x)=$ 1 , since h is a $B L$-homomorphism, then $h\left(x_{1} \odot x_{2} \odot \cdots \odot x_{n}\right)=\left(h\left(x_{1}\right) \odot\right.$ $\left.h\left(x_{2}\right) \odot \cdots \odot h\left(x_{n}\right)\right) \rightarrow h(x)=1$, i.e., $h\left(\left(x_{1} \odot x_{2} \odot \cdots \odot x_{n}\right) \rightarrow x\right)=1$, $h(1)=1$ and by assumption, $\left(x_{1} \odot x_{2} \odot \cdots \odot x_{n}\right) \rightarrow x=1$. Since x_{1}, $x_{2}, \ldots, x_{n} \in D_{1}$ and by Theorem $2.15, x \in\left\langle D_{2}\right\rangle=D_{2}$, so $D_{1} \subseteq D_{2}$.
Suppose $x \in D_{2}$, then $h(x) \in\left\langle h\left(D_{1}\right)\right\rangle=\left\langle h\left(D_{2}\right)\right\rangle$, by Theorem 2.15, there exists $n \in \mathbb{N}$ such that $\left(h\left(x_{1}\right) \odot h\left(x_{2}\right) \odot \cdots \odot h\left(x_{n}\right)\right) \rightarrow h(x)=1$, since h is a $B L$-homomorphism, then $h\left(x_{1} \odot x_{2} \odot \cdots \odot x_{n}\right)=\left(h\left(x_{1}\right) \odot\right.$ $\left.h\left(x_{2}\right) \odot \cdots \odot h\left(x_{n}\right)\right) \rightarrow h(x)=1$, i.e., $h\left(\left(x_{1} \odot x_{2} \odot \cdots \odot x_{n}\right) \rightarrow x\right)=1$, $h(1)=1$ and by assumption, $\left(x_{1} \odot x_{2} \odot \cdots \odot x_{n}\right) \rightarrow x=1$. Since $x_{1}, x_{2}, \ldots, x_{n} \in D_{2}$ and by Theorem $2.15, x \in\left\langle D_{1}\right\rangle=D_{1}$, so $D_{2} \subseteq$ D_{1}. Hence $D_{1}=D_{2}$, for all $D_{1}, D_{2} \in D(A)$.

Corollary 3.22. Let A be a BL-algebra such that every ideals of A is finitely generated. If B is sub $B L$-algebra of A, and B is a co-Noetherian $B L$-algebra, then every sub $B L$-algebra S between B and $A(B \subseteq S \subseteq A)$ is also a co-Noetherian BL-algebra.

Proof. Let S be every sub $B L$-algebra between B and A, i.e., $B \subseteq S \subseteq$ A. By Definition 2.5 , since every ideal of A is finitely generated, so A is a co-Noetherian $B L$-algebra and every ascending chain in S, stops in A, thus S is co-Noetherian.

Acknowledgements

The authors are extremely grateful to the Editor-in-chief, Managing Edi-
tor and the referees for their valuable comments and helpful suggestions.

References

[1] A. Di Nola, G. Georgescu, and A. Iorgulescu, Pseudo BL-algebra: Part I, Mult. Val. Logic., 8 (56) (2002), 673-714.
[2] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, (1988).
[3] L. Leustean, The prime and maximal spectra and the reticulation of $B L$ algebras, Central European Journal of Mathematics, 1 (3) (2003), 382-397.
[4] L. Leustean, Representations of Many-Valued Algebras, Ph.D Thesis, University of Bucharest, Bucharest, Romania, (2003).
[5] S. Motamed and J. Moghaderi, Noetherian and Artinian BL-algebra, Soft comput., doi:10. 1007/soo 5000-012-0876-7, (2012).
[6] B. L. Meng and X. L. Xin, Prime Ideals and Gödel Ideals of $B L$-algebra, Journal of advance in Metamathematics, (99) (2015), 2989-3005.
[7] E. Turunen, BL-algebras of basic fuzzy logic, Mathware Soft Comput., 6 (1999), 49-61.
[8] E. Turunen, Mathematics Behind Fuzzy Logic, Physica-Verlag, Heidelberg, (1999).
[9] E. Turunen, Boolean deductive systems of BL-algebras, Arch. Math. Logic, 40 (2001), 467-473.
[10] E. Turunen and S. Sessa, Local BL-algebras, Mult. Val. Logic 6 (2001), 229-249.
[11] E. Turunen, Semilocal BL-algeras, IX Internati onal IFSA Congress, Beiging, China, 28-31 July (2005), 252-256.
[12] H. J. Zhan and B. L. Meng, Some results in Co-Noetherian BL-algebras, International Journal of Scientific and Innovative Mathematical Research (IJSIMR), 3 (9) (2015), 18-25.

Jamal Kazemiasl
Ph.D Student of Mathematics
Department of Mathematics
Shahrekord Branch, Islamic Azad University
Shahrekord, Iran
E-mail: Kazemiasl.j@gmail.com

Farhad Khaksar Haghani
Associate Professor of Mathematics
Department of Mathematics
Shahrekord Branch, Islamic Azad University
Shahrekord, Iran
E-mail: Haghani1351@yahoo.com

Shahram Heidarian

Assistant Professor of Mathematics
Department of Mathematics
Shahrekord Branch, Islamic Azad University
Shahrekord, Iran
E-mail: Heidarianshm@gmail.com

[^0]: Received: February 2019; Accepted: July 2019

 * Corresponding author

