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Abstract. The article studies the concept of a (p,1))— biprojective
and (¢, 1¥)—pseudo amenable Banach algebra A, where ¢ is a continuous
homomorphism on A and ¢ € ® 4. We show if A is (¢, 1) — contractible,
then A is (¢, 1) — biprojective. The converse holds, whenever A is either
unital or commutative and there exists a, € A such that ¢(ao) = ao.
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1. Introduction

Amenable Banach algebra was introduced by Johnson in [6]. He showed that A
is amenable Banach algebra if and only if A has a approximate diagonal that is,
a bounded net (my) in (A ® A) such that maea —ame — 0 and 7(my)a — a
for every a € A. The notion of a biflat and biprojective Banach algebra was
introduced by Helemskii [4, 5]. Indeed, A is called biprojective if there is a
bounded A-bimodule map 6: A — A ® A such that 7m0 0 = id4.

He considered a Banach algebra A is amenable if A biflat and has a bounded
approximate identity [3, 5]. In fact, A is called biflat if there exists a bounded
A-bimodule map 6 : (A ® A)* — A* such that 0 o 7* = id 4~.

Given a continuous homomorphism ¢ from A into A, authors in [9, 10] are
defined and studied ¢-derivations and ¢-amenability.
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Recall that a character on A is a non-zero homomorphism from A into the
scalar field. The set of all characters on A is called the character space of A
and is denoted by P 4.

This article studies (p,1)— contractible Banach algebras, where ¢ is a con-
tinuous homomorphism on A and ¢ € ®4. We show that if A is (p,¥)—
contractible, then A is (p,1)— biprojective. The converse holds, whenever A
is either unital or commutative and there exists a, € A such that ¢(ag) = ao.

2. (p,7v)— Biprojective Banach Algebras

Suppose that A is a Banach algebra. Let Hom(A) denotes the set of all con-
tinuous homomorphisms from A into itself.

Definition 2.1. Let A be a Banach algebra, ¢ € Hom(A) and ¢ € 4. We
say that A is (p,)— biprojective if there exists a bounded A-bimodule map
0:A— (AR A), where pomobop=r1)op.

If A is a biprojective Banach algebra, then A is a (¢, 1)— biprojective Banach
algebra for every ¢ € Hom(A) and ¢ € $ 4.

Theorem 2.2. Suppose that A is a (p,¥)— biprojective Banach algebra. If I is
a closed deal of A with one sided bounded approzimate identity and o(I) C I.
Then I is (¢|r,¥|r)— biprojective.

Proof. Assume that 6 : A — (A® A) is a continuous A-bimodule map such
that Y omofop(a) =1 op(a) (a € A). Let ¢ : I — A be the inclusion map.
Then 0|; =0 or: I — (A® A) is I-bimodule homomorphism. If I3 denotes
span {abc : a,b,c € I}~, then I® = I, because I has a one sided bounded

approximate identity and

0lr = 0(I)
= 6%
C spanf{a-0(b)-c}™
C spanf{a-m-c:a,ceIme A A}~ CI®I.

So for every a € I,

pomoblrop(a) = Yom((p(a)))
= vYopla) O

Proposition 2.3. Let A be a (pa,14)— biprojective Banach algebra, and let
B be a (pp,vp)— biprojective Banach algebra with pa € Hom(A),
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Ya € g, op € Hom(B) and g € Op. Then AR B is (o4 ® pp, YA @ p)
-biprojective.

Proof. There exists an A-bimodule map 6; : A — (A ® A) with pgomg06;0
w4 =1a0pa and B-bimodule map 03 : B — (B ® B) with ¢ygorgofyopp =
Ypogp. Let Oy : (A® A)R(B® B) — (A® B)®(A® B) be the isometric
isomorphism given by (a1 ® az) ® (b1 ® ba) — (a1 @ b1) ® (a2 ® ba) (a1,as €
A, by,by € B). Welet 0 =6go0(0;®6;): A® A — (A® B)®(A® B). Then
fora® b € A® B we have

Taop 00 (pala)®@pp(b) = maspoboo (0 ®62)0 (pala)®pr(b))
= 7ma®npo (0 ®0:)(pala)®¢r(b))
= maob10pa(a)@mpobyopp(bh).
Thus (Y4 ® ¢¥p) o mygp 000 (pala) ® pp(b)) = Yaomacbiopala)®po
mpobhopp(b) = (Yaopa)®(Wpopp)(a®b)= (Yaoypa)(a)(¥popp)(b) =

(Ya®yp)o(pa®pp)(a®b).
Therefore, A® B is (¢4 ® ¢p,1a ® ¥p)— biprojective. [

The proof of the following result is similar to that of Proposition 2.3.
Proposition 2.4. Let A be a (pa,14)- biprojective Banach algebra, and let B
be a (pp,v¥p)— biprojective Banach algebra with o4 € Hom(A), 14

€ Dy, pp € Hom(B) and vp € ®g. Then AD B is a (pa @ pp,Ya D vUp)—
biprojective.

Proposition 2.5. Let A be a unital Banach algebra, and B be a Banach al-
gebra containing a non-zero idempotent by. If A® B is (pa Q B, @ ¥p)—
biprojective, then A is (¢a, ¥ a)—biprojective.
Proof. There is an A ® B-bimodule § : A® B — (Aé)B)@(Aé) B) with
(Ya®@yp)omyspobo(pa®@pp) = (Ya®Pp)o(pa®pp). Weregard A® B
as an A—bimodule with the actions given by

a1 (a2 ®b) =a1a2®b, and (aa ®b)- a1 =aza; @b (ai,as € A, b € B)

Then for a1,as € A we have

O(aras @ by) = 0((a1 Rbg)(az ® b))

(a1 ®bo) - 0((az ® bo))

a1 - (ea ®bo) - 0((az @ bo))
a1 -0((ea ®bg) - (a2 ® by))
a1 -0(ea-as® b(z))

= aj-0(az ®by).
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Similarly, we can show a right-module version of this equation. Hence we get
0(a1a2 X bo) =a - 9((12 & bo) = 9((11 & bo) - a2 (al,ag S A)
Let ¢ p(by) = 1 and we define

p: (Aé) B)®(A® B) — (A ® A), (a1 ®@b1) ® (a2 @ ba) — Yp(biba)ar ® as,

where ay,as € A and by, by €B. Clearly p is a bounded linear operator.
We now define § : A — (A ® A) by

0(a) = pob(a® pp(b0)) (ac A).
Then 6 is an A-bimodule morphism. It follows from the identity
Taop=(ida®YB)oT s p-
So

Yaomaofopa(a) = waomaopob(pala)®pp(b0)
= Yao(ida®yp)omygpod(pala)®op(b0)
= (Wa®yp)omygpollpala)®pp(b0)
(Ya®YB)o(pa®pp)(a®bl)
= (Paopa)(a)(¥poer)(b)
(Yaopa)(a)

That is, A is (¢4, % 4)—biprojective. O

Definition 2.6. Let A be a Banach algebra, ¢ € Hom(A) and p € & 4. We
say that A is (p,1)— contractible if it has a central (¢,v¥)— diagonal, i.e., a
(¢, 0)- diagonal m € A® A satisfying p(a) - m = m - p(a) for all a € A and
also Y om(m) = 1.

Proposition 2.7. Let A be a Banach algebra, ¢ € Hom(A) and ip € & 4. If
A is (p,)— contractible, then A is (¢,v)— biprojective. The converse holds,
whenever A is either unital or commutative and there is a, € A such that

¢(ag) = ag.
Proof. Suppose that m € A ® A is a central (¢, 1)-diagonal for A. We define
0:A— A® Aby6(a) :=a-m. Then for every a € A we have
pomobop(a) = wOﬂ(w(a) m)
= vYo(pa))pom(m)=1)o(p(a)).

Thus, A is (¢, 1)— biprojective.
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Conversely, since A is (p,%)— biprojective, there is a bounded A- module
morphism 6 : A — A ® A such that Y omofop(a) =9o(p(a)) (a € A). Let
e4 be an identity for A and let m = 6(e4). Then m is a central (¢, 1)) —diagonal
for A.

In the commutative case, let a, € A be such that ¢(ag) = ag. Suppose that
¥(ap) = 1 and define m = 0(agp), then m is a central (p,1))—diagonal for A.
Therefore, A is (p,1)— contractible Banach algebra. [

Example 2.8. Consider the semigroup N, with the operation semigroup m A
n = min{m,n}, m,n € N. ®nn,y = {tby : '(Ny) — Cln(E2,¢:6;) =
%2, ¢i, n € N}. Then [1(N,) is not biprojective [11]. But if we choose 9; €
iy, ¢ € Hom(I*(Np)) and define m = 61 ® 01, then p(a) - m = m - ¢(a)
for all @ € I'(N,) and also 1y o w(m) = 1. Terefore I}(N,) is a (p,11)—
contractible. By Proposition (2.7), I*(N,) is a (¢, %1)—biprojective.

Definition 2.9. Let A be a Banach algebra, ¢ € Hom(A) and ¢ € $4. A
is called (@,%)— biflat if there evists a bounded A-bimodule map 6 : A —
(A® A)** |, where porm** 0fop =1 0.

i) Let A be a biflat Banach algebra. Then A is (¢, 1)— biflat Banach algebra
for every ¢ € Hom(A) and 1) € ® 4.

1i) Let A be a (¢,1)—biprojective Banach algebra. Then A is (p,)— biflat
Banach algebra for every ¢ € Hom(A) and ¢ € ® 4.

The following result can be found in [9].

Lemma 2.10. Let A be a Banach algebra. Then there exists an A-bimodule
homomorphism ~ : (A® A)* — (A** @ A**)* such that for any functional f €
(A® A)*, elements @, € A** and nets (aq), (bg) in A with w* — limaae = ¢
and w* — limgbg = 1 we have

YY) = limalimgf(aa & bﬁ).
If ¢ € @4, then ¢ has a unique extension on A*™* which it by 1; and defined
by ¥(F) = F(v) for every F € A**.
Theorem 2.11. Suppose that A is a Banach algebra, p € Hom(A) and ¢ €
D, If A* is (**, 1)) —biprojective, then A is (p,1)—Dbiflat.

Proof. Let kK : A — A*, k1 : A* — A™* and k, : A" — A" denote
the natural inclusions, © (**m, respectively) the product maps on A (A**, re-
spectively) and let v be defined as in Lemma 2.10. Then the following diagram
commutes:
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™
- A (A® A)*
K1 Y

**71'*

for each a* € A*, elements aj*, a3* € A* and nets (aq), (bg) C A with w* —
lim, aq = a7™, w* —limg bg = a3*, we have

(G @))ai" ® a57) = limlim (@) (aq @ by)

= limlima*(anbp)

= w*—limw* — lién r(aabg)(a®)

= ria’)(ar"az")

= ri(a”)(Mr(a]” ®a3"))

= ("7 (k1(a")))(a1” ® a3").
Thus v o™ ="* 7% o k1. Hence m** o y* = k] o™ 7**. Since A™ is (go**,z/?)—
biprojective, there is an A-bimodule map fy : A** — (A** @ A**), such that
P omobyop™ =1op™™. Putting § := v* 00y o k, then for each a € A we have

*%

1;071'**09090(0,) = &ow**oy*o&oonogp(a)
= toriom™ 0byokopa)

= tpokiom™ 0byop™(a)

= Pomolbyop(a)=1vop(a)

That is, A is (¢,v)—biflat. O

3. (p,1v)-Spseudo Amenable Banach Algebras

Suppose that A is a Banach algebra, ¢ € Hom(A) and ¢ € ®4. Let X be a
Banach A-bimodule. A linear operator D : A — X is a (¢, ¢)—derivation if it
satisfies D(ab) = D(a) - ¥(b) + ¢(a) - D(b) for all a,b € A. A (p,¢)—derivation
D is (p,v)-inner derivation if there is x € X such that D(a) = ¢(a) -z —
x - Y(a) for a € A. Let Z(l%d})(AX) be the set of all continuous (p,)-

derivations and NJ(A, X) be the set of all (¢,%)-inner derivations from A
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into X. The first cohomology group ’H(l% ) (A, X) is defined the quotient space
1

Z () (A X) N, (4, X).

A Banach algebra A is called (¢, )-amenable if H( (A, X7) = {0}, for all

A-bimodules X.

Let A be a Banach algebra and X, Y be Banach A-bimodules. Then A-
bimodule morphism from X to Y is a morphism ¢ : X — Y such that

ola-z)=a-p(x), @E-a)=p()-a (a€ A, zeX)

Theorem 3.1. Assume that A is a Banach algebra with a bounded approzimate
identity and a -b = ¥(a) - b, Y op(a) =1 for every a,b € A. If A is (p,¢)—
amenable, then A is a (¢, ¥)— biflat.

Proof. Let (e,) be a bounded approximate identity for A and E be a w*—cluster
point of (p(eq)@p(en)) in (A ® A)**. We define a (¢, 1)) — derivation D : A —
(A® A)** by D(a) = ¢(a) - E— E -1¢(a). Then

7 (D(a))

w” —lim7[(p(a)(p(ea) ® p(ea)) = (Pea) @ p(ea))d(a)]
= limp(a)p(er) — @(eq)(a)
= limg(aey) — o(e3 )1 (a)
= limy(a)p(eq) — p(eg)v(a) =0.
Therefore, D(A) C ker(n**) = (kerm)**. So there exists N € (kerm)** such
that Da(a) = ¢(a).N — Nap(a). Put M = E — N. Then
Yor* (M) = 4o ﬂ'**(E~— N) =9 on**(E)
w* — li(gnw S W(‘P(ea) Y ‘P(ea))
= limyo oe2) =1.
We now define 0 : A — (A® A)** by a — (a)- M (a € A). Hence, for every
ac€A,
dom*ofopla) = dom(Y(p(a)) - M)
= Y(p(a). O

Definition 3.2. Let A be a Banach algebra, ¢ € Hom(A) and v € & 4. We
say that A is (p,)—approzimate biprojective if there is a net 0, : A —
(A® A)(a € I) of continuous A-bimodule homomorphisms such that 1 o o

0o 0 p(a) = ¢opla).
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Let A be a biprojective Banach algebra. Then A is (¢, 1)) —approximate bipro-
jective Banach algebra for every ¢ € Hom(A) and ¢ € ® 4.

Theorem 3.3. Let A be a (v, )—approzimate biprojective Banach algebra. If
I is a closed ideal of A and o(I) C I, then I is (¢|1,v|1)— approximate bipro-
jective.

Proof. Suppose that 6, : A — (A ® A)(« € I) satisfies 1) o w4 0 0, 0 p(a) —
Y op(a) (a € A) and ig € I such that (i) = 1. Let T : ARA — IRI
be defined by a ® b — aig ® igh (since I is ideal, for every a,b € A, then
aig,tob € I). We define p, = T 0 0,|;. Therefore

Yomropaop(i) = YomroT 0b, 0 (i)
= Yomaobyop(i)
— Yop(i) (iel).

Hence the proof is completes. [J

Theorem 3.4. Suppose that A is a Banach algebra, ¢ € Hom(A) and ¢ €
D . If A is (p,9)—Dbiflat, then A is (p,1)—approzimate biprojective.

Proof. Assume that 6 : A — (A ® A)** is a continuous A-bimodule map such

that ¢ o1%* 0fop(a) = Yop(a) (a € A). By Goldstine’s Theorem, there exists
(0a) C B(A,A® A) such that § = w* — lim, 0. For every a € A we have

w* —lim7mg 00, 0p(a) =w" —lmn}* 0, 0 p(a) =74 00 oyp(a).
« «

So

$oma00a0p(a) > Pomy 080 p(a).
Given € > 0 and take F = {a11a27...,ar} CA Weput M ={pomgoTo
w(a;) — o p(a;)|T € B(A,A® A)}i=1,...». Applying Mazur’s Theorem, we
obtain a net (6(r)) C B(A, A ® A) such that

Yomaobpeowla) — op(a)
So, A is (p,1)—approximate biprojective. O

Definition 3.5. Let A be a Banach algebra, ¢ € Hom(A) and i € 4. We say
that A is (p,1¥)— pseudo amenable if A admit a (p,1)— approximate diagonal,
i.e., there is a net (my) C A® A (not necessary bounded) such that me - p(a) —
o(a) -myg — 0 and pomt(my) — 1 (a € A).

Theorem 3.6. Suppose that A is a Banach algebra, ¢ € Hom(A) and i) €

D . If A** is (p*™*,1)— pseudo amenable, then A is (p,¥)— pseudo amenable.
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Proof. Let () be a (p,1)—approximate diagonal for A**. Then for every
a € A we have (m,, - p(a) — p(a) - My — 0 and ¥ o w(1hs) — 1. By Goldstine’s
Theorem there is a net (1,) in (A ® A), and we can replace weak* convergence
in the above two limit by weak convergence. This implies, by Mazur’s Theorem,
that A is (p,1)— pseudo amenable. [

Theorem 3.7. Suppose that A is a Banach algebra with an approzimate iden-
tity. Then A is (p,1)— pseudo amenable if and only if A is p— approzimate
biprojective.

Proof. Let (eg)ser be an approximate identity for A and suppose that 6, :
A — (A®A) (« €A) satisfies Y oo 0, 0 p(a) — o p(a) (a € A). Let
E = I'x AT be directed by the product ordering and for each A\ = (3,a) € E,
define my = 6,(p(eg)). Using the iterated limit theorem [7, Theorem 2.4], we
get

lim (s - o(a) ~ p(a) ma) = 0 (a€ A),
and also

li{nwow(mx) = li/f\niﬁoﬂ(ea(@(eﬁ)))

= li/r\nwo leg) = 1.

That is, A is (¢, ¢)— pseudo amenable. Conversely, let (mg) be a (¢, 1) —appro-
ximate diagonal for A and define 65 : A — (A @A) byar a- mg. Then for
every a € A we have

pomobsop(a) = Pomo(p(a) mp)
= ¢op(a)pom(mg)
— Yopla). O
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