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Abstract. The intersection graph ΓSI(G) of a group G with identity
element e is the graph whose vertex set is the set V (ΓSI(G)) = G − e
and two distinct vertices x and y are adjacent in ΓSI(G) if and only
if |〈x〉 ∩ 〈y〉| > 1, where 〈x〉 is the cyclic subgroup of G generated by
x. In this paper, at first we obtain some results for this graph for any
Moufang loop. More specially we observe non-isomorphic finite Moufang
loops may have isomorphic intersection graphs.
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1. Introduction

A quasi-group is a non-empty set Q with a binary operation “.” where,
for any two elements a, b ∈ Q, there exist unique elements x, y ∈ Q such
that both equations a.x = y and y.a = b are hold. The quasi-group
with an identity element is called a loop; that is, an element e such that
x.e = e.x = x for all x ∈ Q. A loop is a Moufang loop if any of the four
following identities holds for every x, y, z ∈ Q:
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((xy)x)z = x(y(xz)), (M1)
x(y(zy)) = ((xy)z)y, (M2)
(xy)(zx) = x((yz)x), (M3)
(xy)(zx) = (x(yz))x. (M4)

In general, Moufang loops are non-associative, but they preserve many
known properties of the groups. For parable, for every x, there exist two-
sided inverse x−1 such that xx−1 = x−1x = 1; also, any two elements
of a Moufang loop generate a subgroup. The order of every elements in
loops divides the order of the loop [1, 3]. The Sylow theorem and Hall
theorem are hold in the finite Moufang loops.

The classification of the non-associative Moufang loops started by Chein
in [4, 5]. Naghy and Vojtechovsky in [9] classified the non-associative
non-isomorphic Moufang loops of order 64 and 81. In continue, Slattery
and Zenisek in [10] completed the classification of Moufang loops of order
243. The interesting result is following table where M(n) is the number
of paitrwise non-isomorphic Moufang loops of order n:

n 12 16 20 24 28 32 36 40 42 44 48 52 54 56 60 64 81 243
M(n) 1 5 1 5 1 71 4 5 1 1 51 1 2 4 5 4262 5 72

For a finite group of order n and a new element u, (u /∈ G), Chein [4]
defined the construction M(G, 2) = G ∪ Gu by the multiplication as
follows: 

goh = gh, if g, h ∈ G,
go(hu) = (hg)u, if g ∈ G, hu ∈ Gu,
(gu)oh = (gh−1)u, if gu ∈ Gu, h ∈ G,
(gu)o(hu) = h−1g, if gu, hu ∈ Gu.

and obtained that M(G, 2) is a Moufang loop of order 2n. It is obvious
that M(G, 2) is non-associative if and only if G is non-abelian. There is
an another structure of loops that called Bol loop. A left Bol loop is a
loop L which, for all x, y, and z in L, satisfies the left Bol relation

x(y(xz)) = (x(yx))z.

Similarly, loop L is a right Bol loop provided it satisfies the right Bol
relation

((zx)y)x = z((xy)x).
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Also, a loop which is both a left and right Bol loop is called a Moufang
loop [3].

Theorem 1.1. Theorem 6.2(Cauchys theorem)[11]. Let L be a Bol loop
of odd order. For every prime p dividing L, there exists x ∈ L of order p.

In general, there is an intimate relation between the groups and graphs.
Before starting we would like to introduce some necessary notation and
definitions about the intersection graph. For any graph Γ, we denote the
sets of the vertices by V and edges by E, denote it by Γ = (V,E). For any
vertex g in a graph Γ, deg(g) is the number of edges incident to g. The
neighbour set of a vertex g, is the set of the adjacent vertices with g

and denoted by N(g). A set S ⊆ V in graph Γ is said to be dominating
if N(S) = V − S, (N(S) = ∪s∈SN(s)). A minimal dominating set is
dominating set which no proper subset. The size of smallest minimal
dominatig set is called dominating number and denoted by γ(Γ).

Two graphs Γ1 and Γ2 are isomorphic (written (Γ1
∼= Γ2) if there exists

a bijective map ψ : V (Γ1) −→ V (Γ2) such that any two elements x
and y are adjacent in Γ1 if and only if the elements ψ(x) and ψ(y) are
adjacent in Γ1. A path P is a sequence v0e1v1e2 . . . ekvk whose terms are
alternately distinct vertices and distinct edges and for any i, 1 6 i 6 k,
the ends of ei are vi−1 and vi. The number k is called the length of
path. If in the path P, the terms v0 and vk are adjacent by an edge ek+1,
then the path v0e1v1e2 . . . ekvkek+1 is called a cycle and the length is the
number of its edges. A graph having no cycles is said to be a forest. A
graph Γ is called connected if there is a path between each pair of the
vertices of Γ. The number of connected components in graph Γ is denoted
by ω(Γ). The vertex g in Γ is called cut-vertex if ω(Γ− g) > ω(Γ)[2].

The intersection graph ΓSI(G) of a group G with identity element e is
the graph whose vertex set is the set V (ΓSI(G)) = G−e and two distinct
vertices x and y are adjacent in ΓSI(G) if and only if |〈x〉 ∩ 〈y〉| > 1,
where 〈x〉 is the cyclic subgroup of G generated by x [7].

Our main results concerning finite Moufang loops and we will obtain
some results about the intresection graph of these Moufang loops. More
specially we observe non-isomorphic finite Moufang loops may have iso-
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morphic intersection graphs.

In this paper we examine the intersecion graph of the finite Moufang
loops. We prove that if ε is the number of edges in ΓSI(M), then

ε >
1
2

∑
x∈M−e

o(x)− 2.

And we show that if M is a Moufang loop of odd order, then ΓSI(M) is a
complete graph if and only if M consist of unique subloop of order p and
o(M) = pm, where, p is a prime number and m is a positive integer. In
fact, we prove that the following main Theorem.

Main Theorem. Let G be a finite group and t be the number of the
connected components in the ΓSI(G). Then γ(ΓSI(G)) = t.

2. Results

At first, we need to define the intersection graph of a Moufang loop M

as follows:

Definition 2.1. The intersection graph ΓSI(M) of a Moufang loop M
with identity element e is the graph whose vertex set is the set V (ΓSI(M))
= M − e and two distinct vertices x and y are adjacent in ΓSI(M) if
and only if |〈x〉∩〈y〉| > 1, where 〈x〉 is the cyclic subloop of M generated
by x.

Proposition 2.2. Let M be a finite Moufang loop and x ∈M −e. Then
deg(x) > o(x)− 2.

Proof. Suppose that x ∈M − e, then by definition of the subloop inter-
section graph, x adjacent with all elements xi where i = 2, . . . , o(x)− 1
and which yields deg(x) > o(x)− 2. �

Proposition 2.3. For every finite Moufang loop M , isolated vertices of
ΓSI(M) are of order 2.

Proof. Let x be an isolated vertex of ΓSI(M) and o(x) > 2. Then by
Proposition 2.2 x adjacent with all elements xi (i = 1, . . . , o(x)− 1) and
this is a contradiction. �
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Remark 2.4. The converse of Proposition 2.3 is not true. For example,
in the Moufang loop M := M(D8, 2), the element a2 is of order 2 but
deg(a2) = 2 6= 0.

Proposition 2.5. Let M be a finite Moufang loop and ε be the number
of edges in ΓSI(M). Then

ε >
1
2

∑
x∈M−e

o(x)− 2.

Proof. We know that for any graph, [2], we have:

2ε =
∑

x∈υ(ΓSI)

deg(x)

and by Proposition 2.2, deg(x) > o(x)− 2. So,

ε >
1
2

∑
x∈M−e

o(x)− 2. �

Proposition 2.6. Let M be a finite Moufang loop and ε be the number
of edges in ΓSI(M). Then ε = 1

2

∑
x∈M−e o(x) − 2 if and only if every

element in the M is of prime order other than identity.

Proof. Let ΓSI(M) be a graph with 1
2

∑
x∈M−e o(x)−2 edges. By Propo-

sition 2.3, for all vertices x ∈M − e, we have deg(x) = o(x)−2. Assume
o(x) is not a prime, without loss of generality, we can consider o(x) = pq,
where p is a prime and q is a positive integer. The subloop generated
with element x will be a subgroup. Suppose H =< x >, then from
p | o(H), we get the subgroup H has an element of order p say that y,
so, o(y) = p. By assumption degΓSI(y) = o(y)− 2 = p− 2.

Also, x /∈< y > and y ∈< x >, y is adjacent to at least x, y2, . . . , yp−1,
which yields that degΓSI(y) > p−2, this is a contradiction and so every
element in M is of prime order.

Conversely, suppose that every elements other than identity in the Mo-
ufang loop M is of prime order and there exists an element x ∈M −{e}
such that deg(x) > o(x)−2. Then there exists an element y ∈M−{e, x},
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y /∈< x > and y adjacent with x. So, for some i, j, xi = xj , on the other
hand o(xi) = o(x) and o(yj) = o(y), because, o(x) and o(y) are prime.
Then o(x) = o(y). So, < x >=< y >, which yields to contradiction to
y /∈< x >. Hence, deg(x) = o(x)−2 for all x ∈M−e in the ΓSI(M). �

Theorem 2.7. Let M be a Moufang loop of odd order. Then ΓSI(M) is
a complete graph if and only if M consist of unique subloop of order p
and o(M) = pm, where, p is a prime number and m is a positive integer.

Proof. Let M be a Moufang loop of order n and let ΓSI(M) be a
complete graph. If n is not a prime power, then there exists two prime
dividers p and q of n, also the definition of Moufang loop M implies that
M is a bol loop of odd order. By Theorem 1.1, M has two elements a and
b such that o(a) = p and o(b) = q. Clearly, | < a > ∩ < b > | = 1, so, a
and b are not adjacent in ΓSI(M) and which yields a contradiction with
complete graph, hence o(M) = pm. Now, suppose that the Moufang loop
M has two distinct subloop of order p, then there exists two non-identify
elements a and b such that o(a) = o(b) = p and | < a > ∩ < b > | = 1, so,
a and b are non-adjacent in ΓSI(M) and this is a contradiction. Hence,
M has unique subloop of order p.

Conversely, assume that o(M) = pm where p is prime number and m is
a positive integer and M has unique subloop of order p namely H. Since
every subloop of order p is cycle so there exists an element a ∈ M

such that H =< a >. Also, from o(M) = pm, for any b ∈ M − e,
there exists an integer k where 1 6 k 6 m such that o(b) = pk. Since
H =< a > is a unique subloop of order p, for all b ∈ M − e, we have
< a >⊆< b >. Therefore | < x > ∩ < y > | > p > 1 for all x, y ∈M − e

and so all vertices are adjacent in ΓSI(M), hence ΓSI(M) is a complete
graph. �

Proposition 2.8. Let M be a finite Moufang loop. Then ΓSI(M) is
forest if and only if o(M) = 2α×3β where, α and β are positive integers
and the order of all elements of M is equal to 2 or 3.

Proof. Clearly, if o(M) = 2α × 3β and order of all elements of M is
equals 2 or 3, then ΓSI(M) is the union of the complete graphs with two
vertices, K ,

2s and isolated vertices, hence ΓSI(M) is a forest.
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Conversely, assume that ΓSI(M) is a forest and a is an element of order
more than 3 in M , then a adjacent with all the elements ai where,
i = 2, . . . , o(a) − 1 and there exists integers i, j such that | < ai > ∩ <
aj > | > 1, also, ai is adjacent with aj , so, we get a cycle in graph and
wich yields the contradiction. Hence, the order of all elements of M is
small than 4 and hence o(M) = 2α × 3β . �

Proposition 2.9. Let G = D2n be the dihedral group of order 2n. If
n = pm where p is prime number and m is a positive integer, then

ΓSI(G) = ∪ni=1K1 +Kn−1.

Proof. By the presentation

D2n =< a, b | an = b2 = (ab)2 = 1 >

we get that all elements in the form aib where 0 6 i 6 n− 1 is of order
2 and | < aib > ∩ < ajb > | = 1 and | < ai > ∩ < ajb > | = 1 for every
integers i, j (0 6 i, j 6 n−1). So, all vertices in the form aib are isolated
and since n = pm, then | < ai > ∩ < aj > | > 1 for every integers
i, j (0 6 i, j 6 n − 1), hence all vertices in the form ai,s 1 6 i 6 n are
adjacent and we get a connected component with n− 1 vertices. �

Proposition 2.10. The intersection graph of Moufang loops M(G, 2)
where G is a finite group is not connected and the number of isolated
vertices are equal or biggest than |G|.

Proof. The number of elements of all Moufang loops M(G, 2) is equal
to 2|G| where, there exists |G|−number of elements of the form gu and
o(gu) = 2 and | < gu > ∩ < hu > | = 1, | < gu > ∩ < h > | = 1 for
every g, h ∈ G. Hence all elements gu are isolated vertices in ΓSI(M). �

Remark 2.11. In the intesection graph of the Moufang loops M(D2n, 2),
the 3n vertices are isolated and other vertices format a complete con-
nected component where n = pm.

Remark 2.12. There are Moufang loops that intersection graph of them
are isomorphism but they are not isomorphism. For example,
ΓSI(M(16, 2)) ∼= ΓSI(M(16, 4)), ΓSI ∼= K7 + 8K1 and M(16, 2) �
M(16, 4).
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Theorem 2.13. Let G be a finite group and t be the number of the
connected components in the ΓSI(G). Then γ(ΓSI(G)) = t.

Proof. Clearly, for every connected component with the number of ver-
tices equal or less than 3, any of the vertices will be a dominating set
and the number of dominating set is 1. Now by using the induction over
the number of the vertices if the number of the dominating in every
connected component set with n vertices is 1, then we prove that the
number of the dominating in every connected component set with n+ 1
vertices is 1, for this porpuse, suppose that the number of vertices in the
connected component be n+1, x be a vertex with the maximum degree
in the compnent and o(x) = m and T be a connected component with
n+ 1 vertices. Then every neighbours of x is not a cut-vertex. To prove
it suppose that y be any vertex in ΓSI(G) such that adjacent with x and
o(y) = k. If deg(y) = 1, then ω(T−y) = 1 and the assertion is hold. Now
suppose that deg(y) > 1 and y adjacent with another vertex z(z 6= x),
by defining there are positive integers i and j such that xi = yj and
also, there exist positive integers l and q such that yl = zq. If x adjacent
with z, the proof is completed, otherwise we get the following cases:

(i) If k is a prime integer, then (l, k) = 1 and (j, k) = 1, so, < yj >=<
yl >=< y > and zq will be adjacent with the xi. Hence, xxizqz is
a path from x to z.

(ii) If k is not prime but (l, k) = 1 or (j, k) = 1. Then < y >=< yl >

or < y >=< yj > and zq will be adjacent with the xi and xzqz or
xxiz is a path from x to z.

(iii) If (l, k) 6= 1 and (j, k) 6= 1, then there exist prime integer p(1 6
p 6 k − 1) such that yp ∈< y > and (p, l) = 1, (p, j) = 1 and
< yp >=< y >, so, yp is adjacent with yl and yj and xyjypylz ia
a path from x to z.

So, y is not a cut-vertex and ω(T − y) = 1. By induction we have
T − y is a connected component with n vertex and x has a maximum
degree in this component. Now, {x} is a dominating set for T − y and
γ(T − y) = 1. In the component T , the vertex x is adjacent with y, so,
{x} is a dominating set for T and γ(T ) = 1. �
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