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1. Introduction

The concept of intuitionistic fuzzy sets was introduced by K. Attanassov [1] in
1983. In 2001, E. P. Lee and Y. B. Im [7] introduced the concept of mated fuzzy
topological spaces as a generalization of intuitionistic fuzzy topological spaces
introduced by Coker [4] and smooth topological spaces by Ramadan [14]. Also
they introduced the notion of (r, s)-fuzzy open set, (r, s)-fuzzy closed set, clo-
sure operator and interior operator in mated fuzzy topological spaces. Then,
as a generalization of the regular fuzzy open and regular fuzzy closed sets
introduced by Azad [2] in 1981, Ramadan et.al. [15] brought the concept of
(r, s)-regular fuzzy closed sets in intuitionistic fuzzy topological spaces.

Conforming to the view of J. G. Garcia and S.E. Rodabaugh [5], that Intuition-
istic Fuzzy Sets by definition cannot be Intuitionistic Mathematics, scholars
started to use the term “double fuzzy topological spaces” instead of “intuition-
istic fuzzy topological spaces”.

Later in 2011, Ghareeb [6] introduced and studied various notions of normality
using regular fuzzy closed sets in a double fuzzy topological space. Regular
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fuzzy closed sets were further explored and generalized by several authors [3,
11, 12, 16].

In [8] Levine introduced the concept of simple extension of a topological space
and studied various properties of the same. Extending this notion to fuzzy
topological context, many papers came out later such as [9, 10]. Recently the
authors defined extensions of a double fuzzy topological space and investigated
certain properties of it in [17].

In this paper we compare the families of (r, s)-rfc sets in a double fuzzy topolog-
ical space and its extensions. Though these families are different they are closely
related as there is a non-empty intersection always. Certain type of extensions
in which the family of (r,s)-rfc sets remain unchanged are obtained. Given a
fuzzy set f in a double fuzzy topological space, extensions that make f, (r,s)-
rfc are found. Investigating the structure of various families of fuzzy sets related
to (r, s)-rfc sets, a complemented lattice has been identified.

2. Preliminaries

Throughout the paper, X denotes a nonempty set, I = [0, 1], the closed unit
interval of the real line, Iy = (0,1], I; = [0,1), I* = the set of all fuzzy
subsets of X. The constant fuzzy subset taking the value « is denoted by
a. Also, Iy @ Iydenotes the set {(r,s) € Iy x I : r+ s < 1}.

Definition 2.1. (see [13]) Consider the pair (1,7*) of functions from I* — T
such that

1. 7(f )+T*(f) < 1,VferX,

2. 7(0)=7(1)=1,7°(0) =7"(1) =0,

3. T(finf2) = T(fl)/\T(f2) and T (i A f2) S TH(f1) VT (fo), fi € IX i =
1,

2
4o (V )= At and o (\ £) <\ () fie I ie A

IEA 1EA IEA IEA
The pair (1,7*) is called a double fuzzy topology on X. The triplet (X, 7,7*) is
called a double fuzzy topological space.

Notation: For a given g € IX and for any f € I*, R,f denotes the set
{(fi.f2) i f=FiV(faNg), f1, f2 € IF}
Definition 2.2.(see [17]) Let (X, 7,7*) be a double fuzzy topological space and

geIX. Foraclyand €I, witha >7(g9), 3<7(g) and a + 3 < 1 define
UuU* 1% — 1 by
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1. U(g) = a and U*(g) = B.
2. Forall f € I* —{g}

U(f) = max {r(£),\/ {7(f) A7(f) s (i, fo) € Bof }}
u(f) = min {7 (), A" () VT (1) V B (f1, f2) € Ryf }}

Then the double fuzzy topological space (X,U,U*) is said to be the (g,a,[3)-
extension of (X, 7,7%).
Lee and Im [7] introduced the concept of fuzzy open set and fuzzy closed set

in a double fuzzy topological space.

Definition 2.3. (see [7]) Let (X, 7,7*) be a double fuzzy topological space. For
(r,s) € In® 11, a fuzzy set f is called an (r, s)-fuzzy open ((r,s)-fo, for short) if
7(f) = r and 7*(f) < s. A fuzzy set [ is called an (r, s)-fuzzy closed ((r,s)-fe,
for short) set if and only if f€ is an (r, s)-fo set.

Definition 2.4. (see [7]) Let (X, ,7*) be a double fuzzy topological space. For
each (r,s) € Iy ® Ir, f € IX the operator Cr . : IX x Iy I; — IX defined by

Cre(fir8) = N{g € I¥If <g.7(9%) 2,7 (9°) <5}

is called the double fuzzy closure operator on (X, 7,7%).

Definition 2.5. (see [7]) Let (X, 7,7*) be a double fuzzy topological space. For
each (r,s) € Iy ® I, f € IX the operator j— I x Iy® I, — I* defined by

L (fir8) =\ {g € ¥If 2 9.7(9) 2 n.7"(9) < s

is called the double fuzzy interior operator on (X, 7,7%).

Theorem 2.6. (see [7]) Let (X, 7,7") be a double fuzzy topological space. Then

fOT any (’I", S) € IO EB [17 I‘r;r* (fc7 T, S) = (CT,T* (f7 T, S))C

Later in 2005, Ramadan et.al. [15] introduced the concepts of regular fuzzy
open set and regular fuzzy closed set in mated fuzzy topological spaces which
when restricted to double fuzzy topological spaces give the following:

Definition 2.7. Let (X, 7,7*) be a double fuzzy topological space, f € IX,
(r,s) € Ip® I1. Then

1. f is called (r, s)-regular fuzzy open (or (r,s)-rfo) if
f=1Ir (nyT*(f, r,8),T, s)



104 VIVEK S AND S. C. MATHEW

2. f s called (r,s)-reqular fuzzy closed (or (r,s)-rfc) if
f = CT,T* (IT,T* (fv T, 3)7 T, 5) .

Remark 2.8. Let (X,7,7*) be a double fuzzy topological space, f € IX and
(r,s) € Io® I. Then, f is (r,s)-rfc & f€ is (r,s)-rfo.

3. Regular Fuzzy Open and Regular Fuzzy Closed
Sets in Extensions of a DFTS

Given an extension (X,U,U*) of a double fuzzy topological space (X, 7,7*), it
follows easily that 7(f) < U(f) and 7*(f) = U*(f). Consequently, I, .~ (f,r,s) <
Ly (f,r,s) < fand f < Cyu-(fir,s) < Crre(fyr,s) VF € IX, (r,8) €
Ip ® I,. However, an (r, s)-rfc set in a double fuzzy topological space need not
be so in an extension of it. That is, the property of being (r, s)-rfc in a double
fuzzy topological space is not invariant under taking extensions.

Now the following two questions arise naturally:

1. Can we find a class of (r, s)-rfc sets in a double fuzzy topological space
(X, 7,7*) which remain (r, s)-rfc in all the extensions of (X, 7,7*)?

2. What kind of extensions will retain all the (r, s)-rfc sets as (r, s)-rfc?
This study attempts to answer these questions and related ones.

Notation: Let (X, 7,7*) be a double fuzzy topological space and (r, s) € Io®1;.
Denote by,

C-: rs = the collection of all (r, s)-fuzzy closed sets,

(r,s)
C; .« = the collection of all (r, s)-regular fuzzy closed sets,
O;.rs = the collection of all (7, s)-fuzzy open sets and
(r,s)

O’ .., = the collection of all (r, s)-regular fuzzy open sets.

T,r,8

97',7‘,5 = O‘r,r,s N C‘r,r,s

With respect to the above notations, a straightforward observation given in
[15] takes the following form:

Theorem 3.1. [15] Let (X, 7,7*) be a double fuzzy topological space and (r,s) €
IO 3] Il- Then, O/ g O'r,r,s and C/ g CT,r,s-

T,T,8 T,T,8

The following theorem is an easy consequence of Definition 2.4 and Definition
2.5.
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Theorem 3.2. Let (X, 7,7%) be a double fuzzy topological space. Then for any
(r,s) € Ip® I,

(i). f€Cryrs if and only if Cro+(f,7,s) = f.

(”) f € OT,r,s Zf and OTLZZ/ Zf IT,T* (f7 T, S) = f
The following Theorem shows that a fuzzy set is both (r, s)-rfc and (r, s)-rfo if
and only if it is both (r, s)-fc and (r, s)-fo.
Theorem 3.3. 7, , = 0;,NCr, s =0, . NC;  forany (r,s) € lhy®I.
Proof. By Theorem 3.1, we have O, ., C O, ,sand C. . C Cr, .

For the reverse implication, let f € TO:ST sNCrrs. TherI Tbsy Theorem 3.2

IT,T* (Cr v (f,ry8),1,8) = I+« (f,r,8) = f and Cr v (Irre (f,7r,8),7,8) =
T (fvrr 5) = f

ThlS shows that, f € O/ as desired. [

As expected, (r, s)-fc sets and (r, s)-fo sets in a double fuzzy topological space
will remain so in any extension of the space. Consequently we have,

nc

T,T,8 T,7,8

Theorem 3.4. Let (X, 7,7*) a double fuzzy topological space and
(X, U,U*) be an extension of it. Then, O, s C Oy, s and Cr s C Cyps for
any (r,s) € Ip ® 1.

Remark 3.5. Converse of the above theorem is not true. Consider the (g, o, 3)-
extension (X,U,U*) of the double fuzzy topological space (X, T,7*) where a >
7(9) and B < 7*(g). Then we have g & Or o3 and g¢ & Cr o 5. But, it follows
easily that g € Oy,a,3 and g° € Cy o8-

Remark 3.6. Moreover, the result given by Theorem 3.4 does not hold for

0,5 and C7 . .. That is, it is not true in general that O7,  C Oy, . and
Cr,sC Cu r.s- LThe following example illustrates this.

Example 3.7. Let X = {a b} and consider the following fuzzy subsets of X.

h —( 5) fo= (375) ( ) ( )f5 (2720)

3
fﬁz(%770?)7f77(:1371307) fS (%,170,)Wheref ( q):>

Now, define a double fuzzy topology (7,7*) on X as follows:
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1, if fe€{0,1} 0, if fe{0,1}
%7 lf.f:fl %7 lff:fl
3= I if=1f
) 100 ! 4 wip ) 100 4
L T T e T A e
%7 lff S {f77f8} %7 lff € {f7af8}
0, elsewhere 1, elsewhere

Then7 IT,T*(va?%?T’%) = fl \/f4\/f7 \/Q: f4 and

3 7\ 3 7 3 7
T,T* ITT* P Rl EP il B yTA T | T l: .
Cr, ( ’ (f3 10 10) 10 10> -, (f4 10 10) PaAJsNsNL= fs

i.e., f3 S C;i

10

7
10
t

Again for the set f5, Crr(f5,5,5) = fa A fs A fe A fs A1 = fs and

13 13 13
ITT* T, 7% s gy 4 )y Ty T :ITT* s 7y ] — U= .
: (07 (f5 1 4> 1 4) , <f6 1 4> JNVfaV sV fzv0=fs

Consequently, f5 € O/ ;
i)

oo

Also, note that Cr .~ (f1, %7 %) =foANfsNfeNfsAN1l= fsand

13 13 13
IT,T* (CT,T* <f1a4a4> 74a4> = IT,T* <f67474) = fl \/f4\/f5\/f7\/Q
= s # N

Consequently, f; ¢ O! , 5. Further,
1.3

13 13 13
CT,T* ([7—,7'* <f2a454> 74a4> = CT,T* <f5a474> = fﬁ 7& f2

so that fo € C7 | 5.
T4z

1
CT,T* (f?; ia %) - f7 and OT,T* (IT,T* (fSa %a %) ) ia %) = OT,T* (fSa %a %) - f8-
Similarly, both f7, fs € O’

N

)

NG

Let g = (%), a =23 =2 and (X,U,U*) be the (g,q,3)-extension of

(X,7,7"). Then U and U* are given by:
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1, if f€{0,1}

5, i f=f

1, i f=fa
U= 1 iff=r

%, if f=g

3, it fe{fnfs}

0 elsewhere

and  U*(f) =

Now, Iy = (f3, 10,10) fiV favgVv0=gand

3 7 3 7
Cuu~ (Iu,w <f3, ) '10° 10

10710

so that f3 ¢ Cj, 5 - . Hence, C’; N
10 710

3
»10°

7

10

)

ey

0
2
37
e

(=)

=gl Nl e =

Cuu- (g

if f€{0,1}
if f=ri

if f=/fa
iff=rs
iff=g

if fe{fr fs}

elsewhere

37
"10° 10

= foNfangNl=g# [3

g

3
5700

Also, Cyyu+(f5, 5, 2) = f2 A faA fe AgALl=gand

1 3
Tyt 4 <Cu,u* <f5, > 11

Consequently, f5 € O, | ,
404

3
VRl

For r = % and s =
and Figure 2.

)

Ty~ (9

13

474

)

[iVaVfsVvgVv0=g#fs.

so that O lggOul;

7474

107

he discussions above can be portrayed as in Figure 1

Figure 2. Inclusion structure of various sets in (X,U,U*) of Example 3.7.
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. . L . rC o .
However, there may arise a situation in which C7, ;& Cj, . .. For instance,

take r = % and s = % in the above example. But, the reverse inclusion will

never take place. That is, Cz//{,r,s will never be a proper subset of C . . as proved
below.

Theorem 3.8. Let (X,U,U*) be an extension of a double fuzzy topological
space (X, 7,7*). Then, Cf; . ¢ C7 ., for any (r,s) € Ip ® 1.

7,8
Proof. Let Cj,, , S C!

T,1,8"°

Then,

feCls\Cluprs
= Cuu- (Tuu~(f,r,8),1,8) # f
= 3f1 € Cyrs such that Coye- (Lyge- (fo7,8),7,8) = f1 S f
= 3f1 € Cy,rs such that Iy (f,r,8) < L1 S f
= Iy~ (fi,r,8) = Tyu-(f.r,8) < fr
= Cuu- (Tuy~(f1,r,8),m,8) = f1
= f€C,,

Again7 fl ¢ CT,T,S' FOI‘, IU,U* (fa T, S) < fl ; f = IT,T* (fv T, S) < II/{,Z/{* (fa T, S) <
fl é f so that fl € C(‘r,r,s = f = OT,T* (IT,T* (f; T, S),T’, 5) < fl é fa a contra-
diction.

Thus f1 € Cy,. \C}

Now, the following theorem gives a class of (r, s)-rfc sets which remain so under
extensions.

contradicting the assumption that Cy, . . C O

,T,8) T,7,8"

Theorem 3.9. Let (X,U,U*) be an extension of a double fuzzy topological
space (X, 7,7*). Then for any (r,s) € Iy I, Drrs C Duprs-

Proof. f € Dy = f € Crysand f € Oy . Also, f € Crpg = f© € Orps
and f € O'r,r,s = fc € Cr,ns- Hen067 fv fc € O‘r,r,s N CT,T,S'

Again from definition of extension we have, U(f) > 7(f) and U*(f) < 7*(f)
for all f € IX. Therefore, f, f¢ € Oyrs N Cyrs. i€, f,fC€ Dyurs. O

Corollary 3.10. 2, , s C C.

— T,T,S

/
n CZ/{J‘,S'

Remark 3.11.1n general, Dy.r.s € C.,. ;NCy, . . Forinstance, in Evample 3.7
D3 ={0, L, fr, fs, 9} £{0,1, fr, fs} = C7 1 sNC, « 5. However, Corollary
y404 y404

7404 I
3.13 below provides a sufficient condition for this desired result.

There are extensions of a double fuzzy topological space which keeps the set of
all (r, s)-rfc sets intact. The following theorem accounts for one such situation.
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Theorem 3.12. Let (X, 7,7*) be a double fuzzy topological space and (X,U,U*)
be its (g, o, B)-extension such that T7(g) < a < r and 7*(g) = f > s, (1,5) €
Iy® I. Then, C} .. =C,  and O, =0y, .

T,T,8 T,7,S

Proof. Since 7(fi) AT(fo) Na < a < r, 7(fi) VT*(f2) VB = B > s for all
fi, fa € I, we have O rs = Oy rs. Therefore, C;, s = Cy rs.

Hence, Iy (f,7,s) = I+ (f,7,s) and Cyy-(f,r,s) = Cr«(f,r,s), for all
ferx.

Again, Cyy 4~ (Iwu*(f, r,8),T, 5) =C;r - ([T,T*(f, T,8),T, s) and

Ty u (C’%w(f, r,8),T, s) =1 (CT,T*(f7 r,8),T, s) Hence the proof. [
Corollary 3.13. Let (X,U,U*) be the (g,a, B)-extension of a double fuzzy
topological space (X,7,7*) with 7(9) < a < r and 7*(g) = B > s for some
(r,s) € Io @ I1. Then, Dyrs € Cr, NCY, .

— T,7,8

Remark 3.14. Conwverse of the above theorem is mot true in general. For,
consider the double fuzzy topological space (X, T,7*) defined in Example 3.7. Let

a = %,ﬁ = % and g(z) = é z:fx:a . Then, the (g,a, 3)-extension
s ifz=0.
(U, U*) of (T,7*) is defined by
1, if fe{01} 0, if fe{0,1}
5. iff=nh 2 iff=nh
T, i f=fa 15, iff=fa
Uffy= 1 f=1r and  U(f)=4 2 iff=fs
=, iff=g 5. iff=yg
. iffe{fnfs} 2. iffe{fnfs}
0 elsewhere 1 elsewhere

Here, C;’%’% ={0,1, fs, f7, fs} = CZ'/{’%’%; butr S o and s = (.

Now, it is quite natural to ask, given f € IX, does there exists an extension of
(X, 7,7*) which makes f an (r,s)-rfc set? The following theorem answers this
in the affirmative.

Theorem 3.15. Let (X, 7,7*) be a double fuzzy topological space and f € I
be such that f € Cr s\ Oy,  for some (r,s) € Ip @ I1. Then there erists an
extension (X,U,U*) of (X,7,7%) such that f € C, .

Proof. Let g = f,a = 7(f¢),8 = 7°(f¢) and define a (g, , 3)-extension
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(X, U,U*) of (X,7,7*). Then, clearly U(f) > and U*(f) < s. Therefore,
Iy (f,r,s) = fandCuu*(qu* [ s),r,s) = f.ie., feCy,, O

Now, we characterize the situation in which (r, s)-rfc sets in a space are so in
its extension.

Theorem 3.16. Let (X, 7,7*) be a double fuzzy topological space and (X, U, U*)
be its extension. Also, let f € C7, ¢ for some (r,s) € Io® 1. Then, f € C,
if and only if Bf1 € Cu,r,s such that Iy~ (f,r,8) < f1 < f.

Proof. Suppose Bf1 € Cy s such that Iy (f,7,8) < fi < f. Then, clearly

{fo € I Ty (for,s) < fa, fa € Cursy={f2 € IX:if<fofoc Cutrs } -

Again, f € C'r,r,s = f € C7 ;s and hence f € Cy, 5. Therefore, f € C,, ..

Conversely, f € C& = Cuu- (qu*(f,r s) T, s) f = Vfi € Curs,
Ly~ (f,r8) < f < f1 or fi < Iyy-(f,rs). ie, Bfi € Cy,s such that
IM,Z/{*(faTaS)<f1 <f O

4. Conclusion

This study has brought out the interrelations among various families of fuzzy
sets in a double fuzzy topological space and any extension of it. These families
form a lattice L:z, under set inclusion as shown below.

Orrs Crirs

o Clos

TS

Drrs

Figure 3. Hasse diagram of L7,
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