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V generally not have analytical solution; hence,it is numerical meth-
ods which are preferred [14, 16]. To construct a numerical method and
specially iterative methods, we should consider some computational cri-
teria such as functional evaluations and convergence order in a way that
minimizing functional evaluations one could achieve the maximal conver-
gence order [14, 16]. For this purpose, the efficiency index is defined by
E(n, p) = p

1
n , where p and n stand for convergence order and functional

evaluations, respectively [14, 16]. It is worth noting that Kung and Traub
conjectured that any n-step method without memory is optimal if it uses
n + 1 functional evaluations with convergence order 2n [11]. According
to this conjecture, there have been many attempts to construct such op-
timal methods without memory [1-20]. By methods without memory we
mean those methods that only use available information of functional
evaluations in the current iteration [16]. The convergence orders of the
optimal n-point methods without memory cannot exceed 2n using n+1
functional evaluations. However, it is still possible to increase the conver-
gence order if the idea of introducing self-accelerator or with memory is
applied. While methods without memory use information of the current
iteration, methods with memory focus on using information not only
from the current iteration, but also from the information of the previous
iterations. Hence, they are of better efficiency. This advantage of method
with memory motivated many researchers to pay attention to study such
methods successfully [14]. Indeed, to the best of our knowledge, many
researchers have developed very efficient methods with memory that use
the information of the only last two iterations. However,it is, to our
belief, still possible to use the available information of functional evalu-
ations to increase the convergence order as well as efficiency index of a
method without memory from all previous iterations and not only the
last two iterations. This matter has not been considered in literature,
so to fill this gap, in this work, our prime aim is to develop an adaptive
method with memory,i.e., method that reuses the information from all
the previous iterations and not only the last two iterations. Indeed, we
try to extend the optimal two-step method without memory developed
by Kung and Traub [11] to adaptive method with memory. This idea
enables us to reuse all the previous information, and the efficiency index
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of the optimal method without memory is highly increased. This work is
organised as follows: Section 2 studies the idea of developing the adaptive
method with memory extended from Kung and Traub optimal two-step
method without memory. Also, it is attempted to discuss some special
cases that have practical uses. This section includes convergence analy-
sis,too. Section 3 is devoted to numerical implementations. We disclose
the mathematica code for a special case which can easily be modified
for other cases. Also, some other numerical aspects such as studying the
basin of attraction are carried out. Section 4 will conclude this work.

2. Developing an Adaptive Kung and Traub’s
Method with Memory

This section deals with developing a new kind of methods with mem-
ory. Taken from literature, adaptive methods with memory has not been
investigated yet,so this subject came into our attraction here. By the
terminology “adaptive method with memory” we mean to reuse all the
available data to increase the convergence order of a method without
memory. We emphasize that developed methods with memory in the
literature use only the information of the two last iterations. However,
all the available data are possible to reuse from the first iteration to the
current one iteration. This is the main principle behind the construction
of adaptive method with memory. For this purpose, we consider the first
two steps of the derivative-free method introduced by Kung-Traub


yk = xk − f(xk)

f [xk,wk]
, wk = xk + γf(xk)

xk+1 = yk − f(wk)
f(wk)−f(yk)

f(yk)
f [xk,yk]

, k = 0, 1, 2, · · · ,
(1)

where x0 and γ are given suitably. This is an optimal method without
memory since it uses three functional evaluations per iteration and has
convergence order four. We need to review its error equations:

ek,w = (1 + γf (α))ek +O(e2k), (2)

ek,y = c2
�
1 + γf (α)


e2k +O(e3k), (3)
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and

ek+1 = c2(2c22 − c3)(1 + γf (α))e4k +O(e5k), (4)

where ek = xk − α, ek,w = wk − α, ek,y = yk − α and ck = f (k)(α)
k!f(α) ,

k = 1, 2, ...

In what follows, it is attempted to describe the idea of developing adap-
tive method with memory extracted from the optimal method without
memory(1). Let us look at the error equations (2), (3) and (4). It can
be clearly seen that all of them include the crucial factor 1 + γf (α). If
1+γf (α) = 0, the coefficient of e4k in (4) vanishes, so we find it possible
to increase the convergence order. On the other hand, α is unknown,
so this is impossible. In other words, α can be approximated effectively
as the iterations proceed by the generated sequence {xn}. We give the
complete details of this procedure here. We pointed out since α is un-
known, it is impossible to compute f (α). It is worth noting that even
if we assume that α is known, computing f (α) is not a good policy
since it increases the functional evaluation; hence, the optimality does
not hold. Instead, it is suggested that f (α) is approximated by applying
interpolation concept. To give the clear picture of what this means, we
have to review it briefly. This makes easy our dissuasion of developing
adaptive method with memory. So, we assume that we have the infor-
mation of the current and the previous iteration, say f(xk) , f(xk−1)
,f(wk−1) and f(yk−1). Therefore, f(t) can be interpolated as follows:

f(t) = N3(t;xk, yk−1, wk−1, xk−1) + E(t, xk, yk−1, wk−1, xk−1), (5)

where N3(t) and E(t) stand for Newton’s polynomial interpolation and
its error,respectively. Hence

f (t) = N 3(t) + E(t). (6)

Consequently, to approximate f (α) in 1 + γf (α) = 0, consider

γ = − 1
f (α)

 − 1
N 3(xk)

= γk. (7)
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If we consider the approximate γk = − 1
N 3(xk)

in each iteration in (1),
then we have the following method with memory:






γk = − 1
N 3(xk)

wk = xk + γkf(xk) k = 0, 1, 2, · · · ,
yk = xk − f(xk)

f [xk,wk]
,

xk+1 = yk − f(wk)
f(wk)−f(yk)

f(yk)
f [xk,yk]

,

(8)

where γ0 and x0 are given suitably. Although the method (8) has been
studied well [14], we revise its error analysis again with a different but
simpler approach. We need to have the following:

Lemma 2.1. If γk = −1/N 3(xk), then

1 + γkf
(α) ∼ ek−1ek−1,wek−1,y. (9)

Proof. From (5), we have

N 3(xk) = f (xk)−
f (4)(ξ)

4!
(xk − xk−1)(xk − yk−1)(xk − wk−1)

∼ f (α)(1 + c4ek−1ek−1,wek−1,y).
(10)

Hence

1 + γkf
(α) = 1− f (α)

N 3(xk)
∼ ek−1ek−1,wek−1,y.  (11)

The next theorem addresses the convergence order of the method with
memory (8)

Theorem 2.2. If α is a simple zero of f(x) = 0, and x0 is close enough
to α, then the method (8) has convergence order six.

Proof. Let {xk},{wk}, and {yk} have convergence orders r,p and q,
respectively. Then

ek+1 ∼ erk ∼ (erk−1)
r ∼ er

2

k−1, (12)

ek,w ∼ epk ∼ (epk−1)
r ∼ eprk−1, (13)
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and
ek,y ∼ eqk ∼ (eqk−1)

r ∼ eqrk−1. (14)

Also, by Lemma (2.1), we have

1 + γkf
(α) ∼ ep+q+1k−1 . (15)

Substituting (15) in relations (2),(3) and (4), we have

ek,w ∼ e1+p+q+rk−1 , (16)

ek,y ∼ e1+p+q+2rk−1 , (17)

and
ek+1 ∼ e2+2p+2q+4rk−1 . (18)

To reach the conclusion,we match the right-hand side of (12)-(18), (13)-
(16) and (14)-(17). Thus






2 + 2p+ 2q + 4r = r2

1 + p+ q + r = pr

1 + p+ q + 2r = qr.

(19)

Solving this nonlinear of system gives p = 2, q = 3 and r = 6 
Up to now, we have discussed reusing the available information from
the last two iterations and the convergence order from four to six with-
out any new computation of the functions. In other words, with the
same complexity of the basic optimal method without memory (1),
we are able to improve its efficiency index defined by E(p, n) = p

1
n

introduced by Ostrowski([16]). The efficiency index of method (1) is
E(1) = 4

1
3  1.5874 while the efficiency index of method (8) is E(8) =

6
1
3  1.81712. Now,it is our aim to consider the available information in

the last three iterations to approximate the self-accelerator γk.

To this end, we approximate f(t) by Newton’s interpolation going through
the node xk, yk−1, wk−1, xk−1, yk−2, wk−2, xk−2

f(t) = N6(t) + E(t). (20)
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Hence
γ = − 1

f (α)
 − 1

N 6(xk)
= γk. (21)

We suggest the following new method with memory





γk = − 1
N 6(xk)

wk = xk + γkf(xk)
yk = xk − f(xk)

f [xk,wk]
, k = 0, 1, 2, · · · ,

xk+1 = yk − f(wk)
f(wk)−f(yk)

f(yk)
f [xk,yk]

(22)

where γ0 and x0 are given suitably. To discuss its convergence analysis,
we need to have the following:

Lemma 2.3. If γk = −1/N 6(xk), then

1 + γkf
(α) ∼ ek−1ek−2ek−1,wek−2,wek−1,yek−2,y

=
2

s=1

ek−sek−s,wek−s,y.
(23)

Proof. By differentiating (20)and setting t = xk, we have

N 6(xk) = f (xk)−
f (7)(ξ)

7!

2

s=1

(xk − xk−s)(xk − yk−s)(xk − wk−s)

∼ f (α)(1 + c7

2

s=1

ek−sek−s,wek−s,y).

(24)

Consequently,

1 + γkf
(α) = 1− f (α)

N 6(xk)
= 1− 1

1 + c7
2
s=1 ek−sek−s,wek−s,y

∼
2

s=1

ek−sek−s,wek−s,y. 
(25)

The following theorem addresses the convergence order of the new method
with memory (22).
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Theorem 2.4. If α is a simple zero of f(x) = 0, and x0 is close enough
to α, then the sequence {xn} generated by method (22) has the conver-
gence order 6.31.

Proof. Let {xk},{wk} and {yk} have convergence orders r,p, and q,
respectively, i.e.,

ek+1 ∼ er
3

k−2, (26)

ek−1,w ∼ eprk−2, (27)

and
ek−1,y ∼ eqrk−2. (28)

By Lemma 2.3, we have

1 + γkf
(α) ∼

2

s=1

ek−sek−s,wek−s,y = ek−1ek−2ek−1,wek−2,wek−1,yek−2,y

= erk−2ek−2e
pr
k−2e

p
k−2e

qr
k−2e

q
k−2 = e1+rk−2e

p(1+r)
k−2 e

q(1+r)
k−2 = e

(1+p+q)(1+r)
k−2 ,

(29)

or
1 + γkf

(α) ∼ e
(1+p+q)(1+r)
k−2 . (30)

substituting (30) in relations (2),(3) and (4)gives

ek+1 ∼ e
2(p+q+1)(r+1)+4r2

k−2 , (31)

ek,w ∼ e
(p+q+1)(r+1)+r2

k−2 , (32)

and
ek,y ∼ e

(1+p+q)(1+r)+2r2

k−2 . (33)

To obtain the desired result, it is enough to match the right-hand side
of (26)-(31), (27)-(32) and (28)-(33), giving






(p+ q + 1)(r + 1) + r2 = pr2

(p+ q + 1)(r + 1) + 2r2 = qr2

2(p+ q + 1)(r + 1) + 4r2 = r3.

(34)
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Solving this nonlinear system with the command Solve in Mathematica
software gives the solution p = 1

2(1 +
√
11), q = 1

2(3 +
√
11), and r =

3 +
√
11  6.31 

Methods with memory (8) and(22) use the available information of the
last two and three iterations, respectively. We recall method (8) has been
studied in [14], while method (22) is new. Now, it is attempted to discus
the general case, i.e., adaptive method with memory in which it uses all
the available information from the first iteration to the current itera-
tion. We suppose that we are at the iteration k. In each iteration three
functional evaluations are at hand; therefore, we have computed the
function f(t) at the following points

k−1
s=0{xs, ws, ys}


{xk}. We have

3k + 1 points, so the best Newton’s interpolation which goes through
them has degree 3k. As with the two methods (8) and(22), now, we can
apply the following Newton’s interpolation polynomial for approxima-
tion of the accelerator γk,

f(t)−N3k(t) = E3k+1(t), N3k(t) = N3k(t;xk, yk−1, wk−1, xk−1, ..., y0, w0, x0).
(35)

If we use γk = − 1
N 3k(xk)

, then the following adaptive method with
memory is proposed






γk = − 1
N 3k(xk)

wk = xk + γkf(xk),
yk = xk − f(xk)

f [xk,wk]
, k = 0, 1, 2, · · · ,

xk+1 = yk − f(wk)
f(wk)−f(yk)

f(yk)
f [xk,yk]

,

(36)

where x0 and γ0 are given suitably.
To discuss the error analysis of this method, we need the following
lemma.

Lemma 2.5. If γk = −1/N 3k(xk), then

1 + γkf
(α) ∼

k

s=1

ek−sek−s,wek−s,y. (37)



180 M. J. LALEHCHINI, T. LOTFI AND K. MAHDIANI

Proof. By differentiating (35) and setting t = xk, we have

N 3k(xk) = f (xk)−
f (3k+1)(ξ)
(3k + 1)!

k

s=1

(xk − xk−s)(xk − yk−s)(xk − wk−s)

∼ f (α)(1 + c3k−1

2

s=1

ek−sek−s,wek−s,y).

(38)

Therefore,

1 + γkf
(α) = 1− f (α)

N 3k(xk)
= 1− 1

1 + c3k+1
k
s=1 ek−sek−s,wek−s,y

∼
k

s=1

ek−sek−s,wek−s,y.

(39)

This completes the proof. 
Now, we deal with the convergence analysis of the adaptive method with
memory (36).

Theorem 2.6. If α is a simple zero of f(x) = 0, and x0 is close enough
to α, then the convergence order of the method ((36)) is given by






(p+ q + 1)
k−1

s=0

rs + rk = rkp,

(p+ q + 1)
k−1

s=0

rs + 2rk = rkq,

(p+ q + 1)
k−1

s=0

rs + 4rk = rk+1,

(40)

where r,p and q are the convergence orders of the sequences {xk},{wk},
and {yk}, respectively.

Proof. We have

e1 ∼ er0, e2 ∼ er
2

0 , ..., ek+1 ∼ er
k+1

0 , (41)
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e0,w ∼ ep0, e1,w ∼ erp0 , ..., ek,w ∼ er
kp
0 , (42)

and
e0,y ∼ eq0, e1,y ∼ erq0 , ..., ek,y ∼ er

kq
0 . (43)

By applying relations (41)-(42)to Lemma ??, we have

1 + γkf
(α) ∼ er

k−1

0 ...er0e0e
rk−1p
0 ...erp0 e

p
0e
rk−1q
0 ...erq0 e

q
0

∼ e
(p+q+1)

k−1
s=0 r

s

0 .
(44)

Now, considering this result in the error equations (2)-(4)), we have

ek,w ∼ (1 + γkf
(α))ek ∼ e

(p+q+1)
k−1

s=0 r
s

0 er
k

0

∼ e
(p+q+1)

k−1
s=0 r

s+rk

0 ,
(45)

ek,y ∼ (1 + γkf
(α))e2k ∼ e

(p+q+1)
k−1
s=0 r

s

0 e2r
k

0

∼ e
(p+q+1)

k−1
s=0 r

s+2rk

0 ,
(46)

and

ek+1 ∼ (1 + γkf
(α))2e4k ∼ e

2(p+q+1)
k−1
s=0 r

s

0 e4r
k

0

∼ e
2(p+q+1)

k−1
s=0 r

s+4rk

0 .
(47)

Now, to achieve the devised result it is enough to match the right-hand
side of (41)-(47),(42)-(46) and (43)-(45), respectively. Then






er
kp
0 ∼ e

(p+q+1)
k−1
s=0 r

s+rk

0

er
kq
0 ∼ e

(p+q+1)
k−1
s=0 r

s+2rk

0

er
k+1

0 ∼ e
2(p+q+1)

k−1
s=0 r

s+4rk

0 .

(48)

Hence 




(p+ q + 1)
k−1

s=0

rs + rk = rkp

(p+ q + 1)
k−1

s=0

rs + 2rk = rkq

2(p+ q + 1)
k−1

s=0

rs + 4rk = rk+1.

(49)

This completes the proof. 
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3. Numerical Test Problems and Discussions

In this section, we try to implement the adaptive method with memory
(23) to show its practical feature. To this end, among many test prob-
lems, three test functions are considered and reported. Also, we disclose
the mathematica code for this section. Table 1 shows the test functions,
and Table 2 presents the numerical results. The basic optimal method
without memory (1) has the convergence order four. However, its ex-
tension adaptive method with memory (36) has convergence orders 6,
6.31, and 6.36 for k = 1, 2, 3, respectively. Indeed, let us look at them
closely. As can be seen in the first row of Table 1, the error exponents are
decreasing according to the structure of the adaptive method with mem-
ory (36). In its first iteration, the error exponent is -6, corresponding to
k = 1, while for the second iteration it is -39. The last column shows
the approximate COC which is in accordance with the claimed goal in
Theorem 2.6. Similarly, the next row of the reported result is in accor-
dance with the given theory in Theorem 2.6. The last example shows
that it is possible that for some test functions, the desired results are not
supported. However, it produces an acceptable COC, say 6.2. It should
be noted this issue is probably solved if we change the initial data. In-
deed, in implementation, to achieve a good performance, one should pay
enough attention to other aspects of the provided algorithms, not only
to its direct running.

Table 1: Test functions for γ = 0.1, λ = 0.1

Table 2: Results of (36) for different test functions

On Developing an Adaptive Free-Derivative Kung and Traub’s Method
with Memory 13

Table 1: Test functions for γ = 0.1, λ = 0.1

Example x0 α

f1(t) = e(t
3−t) − cos(t2 − 1) + t3 + 1 -1.00 -1.65

f2(t) = et sin(t) + log(t4 − 3t+ 1) 0.00 0.30
f3(t) =

1
t4
− t2 − 1

t + 1 1.00 2.00

Table 2: Results of (2.36) for different test functions

Funs. |x1 − α| |x2 − α| |x3 − α| COC

f1 0.6588(-1) 0.4012(-6) 0.4181(-39) 6.3239
f2 0.1157(-1) 0.1492(-8) 0.8962(-53) 6.4185
f3 0.9741(-5) 0.1095(-24) 0.9272(-149) 6.2195

We have drawn the basins of attractions for both methods without
and with memory (2.1) and (2.36) in Figures 1, 2, and 3. The aim
of these drawings is to determine which one of the mentioned meth-
ods is better from the point of numerical stability. The test function
is p(z) = z3 − 1. As can be seen, at first glance it seems the optimal
method without memory (2.1) is more stable than the adaptive method
with memory (2.36). Indeed, Figure 1 corresponds to the initial fixed
parameter γ = −0.01 while Figure 2 corresponds to the approximate
γ3 = −0.3332 computed by (2.21). If we change the fixed parameter
of the optimal method without memory (2.1), say γ = 1, Figure 3 is
generated which is lousy. To conclude, the stability behaviour of the
optimal method without memory (2.1) varies as its parameter varies.
For some parameters it is more stable than the adaptive method with
memory (2.36) and for some it is not. Therefore, we cannot say which
method is generally more stable. To study some other aspects of the
stability, one can consult [1, 6].
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Table 1: Test functions for γ = 0.1, λ = 0.1

Example x0 α

f1(t) = e(t
3−t) − cos(t2 − 1) + t3 + 1 -1.00 -1.65

f2(t) = et sin(t) + log(t4 − 3t+ 1) 0.00 0.30
f3(t) =

1
t4
− t2 − 1

t + 1 1.00 2.00

Table 2: Results of (2.36) for different test functions

Funs. |x1 − α| |x2 − α| |x3 − α| COC

f1 0.6588(-1) 0.4012(-6) 0.4181(-39) 6.3239
f2 0.1157(-1) 0.1492(-8) 0.8962(-53) 6.4185
f3 0.9741(-5) 0.1095(-24) 0.9272(-149) 6.2195

We have drawn the basins of attractions for both methods without
and with memory (2.1) and (2.36) in Figures 1, 2, and 3. The aim
of these drawings is to determine which one of the mentioned meth-
ods is better from the point of numerical stability. The test function
is p(z) = z3 − 1. As can be seen, at first glance it seems the optimal
method without memory (2.1) is more stable than the adaptive method
with memory (2.36). Indeed, Figure 1 corresponds to the initial fixed
parameter γ = −0.01 while Figure 2 corresponds to the approximate
γ3 = −0.3332 computed by (2.21). If we change the fixed parameter
of the optimal method without memory (2.1), say γ = 1, Figure 3 is
generated which is lousy. To conclude, the stability behaviour of the
optimal method without memory (2.1) varies as its parameter varies.
For some parameters it is more stable than the adaptive method with
memory (2.36) and for some it is not. Therefore, we cannot say which
method is generally more stable. To study some other aspects of the
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3. Numerical Test Problems and Discussions

In this section, we try to implement the adaptive method with memory
(23) to show its practical feature. To this end, among many test prob-
lems, three test functions are considered and reported. Also, we disclose
the mathematica code for this section. Table 1 shows the test functions,
and Table 2 presents the numerical results. The basic optimal method
without memory (1) has the convergence order four. However, its ex-
tension adaptive method with memory (36) has convergence orders 6,
6.31, and 6.36 for k = 1, 2, 3, respectively. Indeed, let us look at them
closely. As can be seen in the first row of Table 1, the error exponents are
decreasing according to the structure of the adaptive method with mem-
ory (36). In its first iteration, the error exponent is -6, corresponding to
k = 1, while for the second iteration it is -39. The last column shows
the approximate COC which is in accordance with the claimed goal in
Theorem 2.6. Similarly, the next row of the reported result is in accor-
dance with the given theory in Theorem 2.6. The last example shows
that it is possible that for some test functions, the desired results are not
supported. However, it produces an acceptable COC, say 6.2. It should
be noted this issue is probably solved if we change the initial data. In-
deed, in implementation, to achieve a good performance, one should pay
enough attention to other aspects of the provided algorithms, not only
to its direct running.

Table 1: Test functions for γ = 0.1, λ = 0.1

Table 2: Results of (36) for different test functions

182 M. J. LALEHCHINI, T. LOTFI AND K. MAHDIANI

3. Numerical Test Problems and Discussions

In this section, we try to implement the adaptive method with memory
(23) to show its practical feature. To this end, among many test prob-
lems, three test functions are considered and reported. Also, we disclose
the mathematica code for this section. Table 1 shows the test functions,
and Table 2 presents the numerical results. The basic optimal method
without memory (1) has the convergence order four. However, its ex-
tension adaptive method with memory (36) has convergence orders 6,
6.31, and 6.36 for k = 1, 2, 3, respectively. Indeed, let us look at them
closely. As can be seen in the first row of Table 1, the error exponents are
decreasing according to the structure of the adaptive method with mem-
ory (36). In its first iteration, the error exponent is -6, corresponding to
k = 1, while for the second iteration it is -39. The last column shows
the approximate COC which is in accordance with the claimed goal in
Theorem 2.6. Similarly, the next row of the reported result is in accor-
dance with the given theory in Theorem 2.6. The last example shows
that it is possible that for some test functions, the desired results are not
supported. However, it produces an acceptable COC, say 6.2. It should
be noted this issue is probably solved if we change the initial data. In-
deed, in implementation, to achieve a good performance, one should pay
enough attention to other aspects of the provided algorithms, not only
to its direct running.

Table 1: Test functions for γ = 0.1, λ = 0.1

Table 2: Results of (36) for different test functions

182 M. J. LALEHCHINI, T. LOTFI AND K. MAHDIANI

3. Numerical Test Problems and Discussions

In this section, we try to implement the adaptive method with memory
(23) to show its practical feature. To this end, among many test prob-
lems, three test functions are considered and reported. Also, we disclose
the mathematica code for this section. Table 1 shows the test functions,
and Table 2 presents the numerical results. The basic optimal method
without memory (1) has the convergence order four. However, its ex-
tension adaptive method with memory (36) has convergence orders 6,
6.31, and 6.36 for k = 1, 2, 3, respectively. Indeed, let us look at them
closely. As can be seen in the first row of Table 1, the error exponents are
decreasing according to the structure of the adaptive method with mem-
ory (36). In its first iteration, the error exponent is -6, corresponding to
k = 1, while for the second iteration it is -39. The last column shows
the approximate COC which is in accordance with the claimed goal in
Theorem 2.6. Similarly, the next row of the reported result is in accor-
dance with the given theory in Theorem 2.6. The last example shows
that it is possible that for some test functions, the desired results are not
supported. However, it produces an acceptable COC, say 6.2. It should
be noted this issue is probably solved if we change the initial data. In-
deed, in implementation, to achieve a good performance, one should pay
enough attention to other aspects of the provided algorithms, not only
to its direct running.

Table 1: Test functions for γ = 0.1, λ = 0.1

Table 2: Results of (36) for different test functions



ON DEVELOPING AN ADAPTIVE FREE-DERIVATIVE ... 183

We have drawn the basins of attractions for both methods without and
with memory (1) and (36) in Figures 1, 2, and 3. The aim of these draw-
ings is to determine which one of the mentioned methods is better from
the point of numerical stability. The test function is p(z) = z3 − 1. As
can be seen, at first glance it seems the optimal method without memory
(1) is more stable than the adaptive method with memory (36). Indeed,
Figure 1 corresponds to the initial fixed parameter γ = −0.01 while Fig-
ure 2 corresponds to the approximate γ3 = −0.3332 computed by (21). If
we change the fixed parameter of the optimal method without memory
(1), say γ = 1, Figure 3 is generated which is lousy. To conclude, the
stability behaviour of the optimal method without memory (1) varies
as its parameter varies. For some parameters it is more stable than the
adaptive method with memory (36) and for some it is not. Therefore,
we cannot say which method is generally more stable. To study some
other aspects of the stability, one can consult [1, 6].

Figure 1. Dynamical Planes for (1) for γ = −0.1
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Figure 2. Dynamical Planes for (36) for γ = −0.3332

Figure 3. Dynamical Planes for (1) for γ = 1
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4. Conclusion

In this work, we have tried to develop an adaptive method with mem-
ory for the first time. Compared to the previous methods with memory,
this method uses all the available information from the first iteration to
the current iteration, so it increases the efficiency index as high as possi-
ble. It should be noted that we considered only one accelerator, while the
previous methods in literature have used one, two, or three accelerators
in which increasing such accelerators may result in numerical instability
and complexity. We emphasise that though it is possible to reuse the all
the information from the first iteration to the current iterations at least
theoretically, in the case study in this work, using the information of the
last three iteration has the high impact and increases the efficiency index
well enough. Also, we noted that we could not reach a conclusion about
numerical stability of the proposed method with memory as apposed to
its optimal method without memory from the basins of attraction point.
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