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In the most real-world applications, the parameters of the problem are not well
understood. This is caused the problem data to be uncertain and indicated
with intervals. A model for decision making based on uncertainty is interval
quadratic programming (IQP).

The interval data of the problem makes the optimal values of the objective
function inaccurate (interval) that we show it by f±= [f−, f+]. The numbers
f− and f+ show the best and the worst optimal values of the IQP (in mini-
mization problem). The optimal solutions for the IQP are also uncertain in a
set.

In recent years, several papers have studied the subject of obtaining objective
function bounds of interval quadratic programming problem. Hladik [5, 6], Li
[7] and Li et al. [8, 9, 11] obtained the optimal values of IQP with nonnegative
variables in different cases of constraints. The IQP problem with unrestricted
variables in sign has been researched by Hladik [4]. Li et al. [8, 9, 11] proposed
the duality theory for solving IQP. They determined the upper bound of the
objective function in minimization case by Dorn dual quadratic program. A
pair of two-level mathematical programs to calculate the objective function
bounds and optimal solution of the IQP problem was suggested by Liu and
Wang [12], Li and Tian [10], and Syaripuddin et al. [15, 16].

The set of optimal solutions for the IQP problem has not been researched
yet. This paper aims at describing the conditions which state a set of optimal
solutions in interval quadratic programming problems.

2. Preliminaries

The basic definitions and properties of interval arithmetic, including interval
number and interval matrix, can be seen at [1, 13, 3, 14].

An interval number x± is shown as [x−, x+] that x−x+. If x−=x+ then it
is a real number.

If m,n ∈ N then interval matrix A± is as follows

A± =

A−, A+


=


A∈Rm×n : A−AA+


.

The matrices A− and A+ are bounds of interval matrix A±. Two matrices

Ac =
1
2
�
A+ + A−


, A∆ =

1
2
(A+ −A−)

denote the center and the radius of A±, and we define

A± =

Ac −A∆ , Ac +A∆


.
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An interval vector is a one-column interval matrix that is considered as a special
case of an interval matrix.

b± =

b−, b+


=


b∈Rm : b−  b  b+



=

bc − b∆, bc + b∆



where
bc =

1
2


b++b−


, b∆ =

1
2


b+−b−


.

Suppose {±1}m is a set of all {-1,1} m-dimensional vectors. In other words

{±1}m = {y∈Rm : |y|=e}

where e = (1, 1, . . . , 1)t.

For each y∈{±1}m, we define Dy = diag(y1,y2, . . . ,ym) that it indicate the
corresponding diagonal matrix.

If x ∈Rn, then the vector of its sign is shown as follows

(sgn x)i =


1 xi  0
−1 xi < 0

that i=1,2,. . . ,n. We display |x| = Dsx where s = sgn x∈{±1}n.
For each y∈{±1}m and s∈{±1}n, following matrices are defined

Ays = Ac −DyA∆Ds.

Similarly, for each y∈{±1}m we define the following vectors

by = bc +Dyb∆

3. Interval Quadratic Programming

An IQP problem consists of a quadratic objective function and linear con-
straints that have contained one or more interval parameters. It can be stated
in the inequality form as follows

min xTQ±x+C±
T

x

s.t. A±x  b±

x  0 (1)
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where Q±=

Q−, Q+


∈IRn×n, C±=


C−, C+


∈IRn, A± =


A−,A+


∈

IRm×n and b±=

b−, b+


∈IRm. Notice that the sets of all m × n interval

matrices and all m-dimensional interval vectors respectively denoted as IRm×n
and IRm.

The IQP problem is the family of quadratic programming problems called char-
acteristic problems and displayed as follows

min xTQx+CTx

s.t. Ax  b

x  0 (2)

whereQ∈Q±=

Q−, Q+


, C∈C±=


C−, C+


, A∈A±=


A−, A+


, and

b∈b±=

b−, b+


. Q is positive semidefinite and symmetric for all Q∈Q±.

The optimal value of the objective function for the problem (2) is shown
as f∈ [f−, f+].

Equivalently, the IQP problem (1) can be written as

min
n

i=1

n

j=1


q−ij , q

+
ij


xixj +

n

j=1


c−j , c

+
j


xj

s.t.
n

j=1


a−ij , a

+
ij


xj 


b−i , b

+
i


i = 1, 2, . . . ,m

xj  0 j = 1, 2, . . . , n.

(3)

The characteristic problem of (3) is as follows

min
n

i=1

n

j=1

qijxixj +
n

j=1

cjxj

s.t.
n

j=1

aijxj  bi i = 1, 2, . . . ,m

xj  0 j = 1, 2, . . . , n.

(4)

where qij ∈

q−ij , q+ij


, cj ∈


c−j , c

+
j


, aij ∈


a−ij , a+ij


and bi ∈


b−i , b+i


for

i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

To calculate the objective function bounds of IQP problem, we solve two char-
acteristic problems (4) that they are described in Definition 3.1.
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In minimizing IQP problem, calculating the lower bound f−is usually easy but
the upper bound f+has hard calculation.

In the next section, we review the calculation for bounds of the objective func-
tion in different cases of constraints and decision variables.

We say that a real vector x = (x1, x2, . . . , xn)
t ∈ Rn is a feasible solution for

(2), if for each A ∈

A−, A+


and b∈


b−, b+


then Ax  b and x  0.

Definition 3.1. [7] The bounds of optimal values for IQP problem (3) are
computed by solving the following problems:

f− = min
n

i=1

n

j=1

q−ijxixj +
n

j=1

c−j xj

s.t.
n

j=1

a−ijxj  b+i i = 1, 2, . . . ,m

xj  0 j = 1, 2, . . . , n.

(5)

f+ = min
n

i=1

n

j=1

q+ijxixj +
n

j=1

c+j xj

s.t.
n

j=1

a+ijxj  b−i i = 1, 2, . . . ,m

xj  0 j = 1, 2, . . . , n.

(6)

We call problems (5) and (6) the best problem (BP) and the worst problem
(WP) of (3), respectively.

Theorem 3.3 concludes that objective bounds for IQP (3) lie in the range of
[f−, f+] .

Theorem 3.2. The problems (5) and (6) have the largest and the smallest
feasible regions defined by (3).

Proof. Consider the constraints
n

j=1 ajxj  b corresponding to the problem
(4). Due to xj  0 for each j, we have

n

j=1

a−j xj 
n

j=1

ajxj 
n

j=1

a+j xj  b−  b  b+

Therefore,
n

j=1 a
−
j xj  b+ is the largest feasible region that covers all other

regions, and
n

j=1 a
+
j xj  b− is the smallest feasible region. 
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Theorem 3.3. If f∗is the bound of a characteristic problem (4), then f∗− 
f∗  f∗+, so that f∗−and f∗+are the objective function bounds of IQP (3).

Proof. Let x∗ = (x∗1, x
∗
2, . . . , x

∗
n)
t is the optimal solution for characteristic

problem (4), also
x∗− =

�
x∗1
−, x∗2

− , . . . , x∗n
− t

and x∗+ =
�
x∗1

+, x∗2
+ , . . . , x∗n

+

t are re-

spectively optimal solutions for the BP and the WP.

The BP has the largest feasible region. Accordingly x∗ is a feasible solution
of the BP. Therefore we conclude

n

i=1

n

j=1

q−ijx
∗
i x
∗
j +

n

j=1

c−j x
∗
j 

n

i=1

n

j=1

q−ijx
∗
i
−x∗j

− +
n

j=1

c−j x
∗
j
− = f∗−.

For each j, qij  q−ij , and cj  c−j then

f∗ =
n

i=1

n

j=1

qijx
∗
i x
∗
j +

n

j=1

cjx∗j 
n

i=1

n

j=1

q−ijx
∗
i x
∗
j +

n

j=1

c−j x
∗
j .

Thus f∗  f∗−.

Because the WP has the smallest feasible region, so x∗+is a feasible solution
for (4). Therefore

f∗ =
n

i=1

n

j=1

qijx
∗
i x
∗
j +

n

j=1

cjx∗j 
n

i=1

n

j=1

qijx
∗
i
+x∗j

+ +
n

j=1

cjx
∗
j .

+

For all j, q+ij  qij and c+j  cj so

n

i=1

n

j=1

qijx
∗
i
+x∗j

+ +
n

j=1

cjx∗j
+ 

n

i=1

n

j=1

q+ijx
∗
i
+x∗j

+ +
n

j=1

c+j x
∗
j
+ = f∗+

We derive f∗  f∗+; hence f∗−  f∗  f∗+. 

4. Objective Function Bounds of the IQP Prob-
lem

This section reviews determination the objective function bounds in different
cases of constraints for IQP problem.

Case 1. In this case, the IQP has inequality constraints. In summary, the IQP
problem (1) is written as follows

min


xTQ±x+C±
T

x : A±x  b±, x  0

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where Q±∈IRn×n, C±∈IRn, A±∈IRm×n, and b±∈IRm.

For this problem, we have

f− = min


xTQ−x+C−
T

x : A−x  b+ , x  0


f+ = min


xTQ+x+C+
T

x : A+x  b−, x  0

.

Description of this case is given in the previous section.

Case 2. In this case, the IQP problem has equality and inequality constraints.
For this problems, the calculation of f− is simple, but the calculation of f+ is
difficult [9].

min


xTQ±x+C±
T

x : A±x  b± , B±x = d±, x  0


where Q±∈IRn×n, C±∈IRn, A±∈IRm×n, b±∈IRm, B±∈IRk×n, and d±∈IRk
and its characteristic problem is as follows

min


xTQx+CTx : Ax  b, Bx = d, x  0


(7)

where Q ∈ Q±, C ∈ C±, A ∈ A±, b ∈ b±, B ∈ B±, d ∈ d±, and Q is
positive semidefinite and symmetric for all Q∈Q±.

The Dorn dual quadratic programming can be used to calculate f+ in this case
(refer to [9]).

Dorn dual problem of the quadratic programming problem (1) is

max

−uTQu− bT v− dTw : 2Qu+AT v+BTw+C  0,v  0


.

Case 3. In case 3, IQP has unrestricted decision variables in sign

min


xTQ±x+C±
T

x : A±x  b±


(8)

where Q± ∈IRn×n, C±∈IRn, A±∈IRm×n, and b±∈IRm.

The characteristic problem of (2) is as follows

min


xTQx+CTx : Ax  b


(9)

where Q∈Q±, C∈C±, A∈A±, b∈b±, and Q is symmetric and positive
semidefinite for all Q∈Q±.
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We call the union of all solutions as the solution set, so

F =


x∈Rn : ∃A∈A±, ∃b∈b±, Ax  b

. (10)

In this case, both of the bounds f− and f+ have hard calculation [2].

Since the variable x is unrestricted in sign; the bound f+ can not be obtained
by solving a characteristic problem. So we consider several quadratic program-
ming problems. If s ∈ {±1}n, then the corresponding orthant is described by
DS x  0, and the quadratic program is given as follows

min xT (Qc +Q∆DS)x+ (Cc +DSC∆)
T

x

s.t. (Ac +A∆DS)x  b−

DS x  0 (11)

Optimal bound for the problem (11) is shown as f+
s .

The above QP problem can easily be solved. The problem (11) has the smallest
feasible region and is suitable for finding the worst bound of the objective func-
tion. Thus, the value of f+ can be computed by solving 2n ordinary quadratic
programming problems.

f+ = min
s∈{±1}n

f+
s .

Similar to f+, the calculation f− is also hard. For calculation f−, the feasible
set F of (11) must be convex [2]. The set F is not generally convex. If F is
restricted to one orthant, then becomes convex [2]. Suppose s ∈ {±1}n, so the
corresponding orthant is represented by Ds x  0, and its intersection with F
is equal to 

Ac −A∆DS


x  b+, DS x  0. (12)

Thus, the lower bound f− can be computed by solving 2n ordinary quadratic
programming problems with the feasible region (12), which identifies the largest
feasible region.

min xT (Qc −Q∆DS)x+ (Cc −DSC∆)
T

x

s.t. (Ac −A∆DS)x  b+

DS x  0. (13)

If f−s is the optimal bound for (13), then

f− = min
s∈{±1}n

f−s .
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5. The Optimal Solution Set in IQP

Now, we want to calculate a set of optimal solutions in interval quadratic prob-
lems. This item has not been investigated yet. First, we are going to introduce
new theorems for determining the regions containing the optimal solutions to
the IQP problems.

As we know, there is no requirement that the optimal solution of the QP
problem is an extreme point like those of the linear programming problem.

To do this, we use the BP and the WP constraints, in which the optimal
solutions to the IQP problem are positive. The BP has the largest region;
hence if all components of the feasible solutions to the BP are positive, then
components of the feasible solutions and thus the components of the optimal
solution for all of the characteristic problems are positive.

We also assume that for the IQP problem, the number of constraints and the
number of decision variables are equal, that is m = n.

The following definition is introduced to express a lemma and a theorem that
specifies a set of optimal solutions to the IQP.

Definition 5.1. Suppose x = (x1, x2, . . . , xn)
t
, then M i and Ni are defined

as follows

Mi =




x :
n

j=1

a−ijxj  b+i




 , Ni =




x :
n

j=1

a+ijxj  b−i






where 1  i  m. The sets Mi and Ni respectively represent the constraints
of BP and the constraints of WP with the inverse sign.

Suppose x∗− =
�
x∗1
−, x∗2

− , . . . , x∗n
− t

is the optimal solution of the BP and
x∗ = (x∗1, x

∗
2 , . . . , x

∗
n)

t is an optimal solution of the characteristic problem
(4). Assume that m = n and all of the optimal solution components of the
BP are positive. It is easy to check that each feasible region only has one
extreme point, and given that the BP has the largest feasible region, therefore
x∗j
−  x∗j where j=1, 2,. . . , n.

Lemma 5.2. Suppose m = n and all of the feasible solution components to the
BP are positive. If the optimal solution for the best problem of the IQP is an
extreme point, then the optimal solution of each problem (4) will be an extreme
point.

Proof. Consider the IQP problem (3). Let x∗− =
�
x∗1
−, x∗2

− , . . . , x∗n
− t

be the optimal solution of the BP (5). Because x∗− is an extreme point, all
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constraints of (5) are active in it and for each i = 1, 2 , . . . , m = n, we have

n

j=1

a−ijx
∗
j
− = b+i .

Suppose x∗ = (x∗1, x
∗
2 , . . . , x

∗
n)
t be an optimal solution for (4), we want to

prove that x∗ is an extreme point.

By using the proof of the contradiction we presume which x is not an extreme
point, so at least one of the constraints of (4) is not active in x∗. In other words

∃ k , 1  k  n :
n

j=1

akjx
∗
j < bk. (1)

For the BP (5), we have

n

j=1

a−kjx
∗
j
− = b+k  bk

All of the feasible solution components of the BP are positive. According to
Theorem 3.2, BP has the largest feasible region; therefore the feasible region
of (5) is perfectly in the positive area.

So if the vector x = (x1, x2, . . . , xn)
t is a feasible solution for (5), then xj > 0

where j = 1, 2, . . . , n.

Since the feasible region of (5) consists of each feasible region of the problem
(4), it is easy to verify that x∗j

−  x∗j for j = 1, 2, . . . , n. By using the
inequality (1) for r= k, we have

n

j=1

a−kjx
∗
j
− 

n

j=1

a−kjx
∗
j 

n

j=1

akjx
∗
j < bk

In which
n

j=1 a
−
kjx

∗
j
− < b+k is in contrast to the extreme point , and the

activation of the kth constraint of (5) in optimal solution x∗−.

Therefore, the optimal solution x∗ for (4) must be an extreme point. 

Theorem 5.3. Suppose that all of the assumptions of Lemma 5.2 are estab-
lished. Then a set of optimal solutions to the IQP problem is obtained from the
intersection of the region created by the constraints of BP and the constraints
of WP with the inverse sign.
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Proof. We assume that x∗is an optimal solution for a characteristic problem
(4). According to Lemma 5.2, x∗ is an extreme point, and all constraints of
(4) are active in x∗. We derive

n

j=1

a−ijx
∗
j 

n

j=1

aijx
∗
j = bi  b+i

therefore x∗ ∈Mi. Also
n

j=1

a+ijx
∗
j 

n

j=1

aijx
∗
j = bi  b−i

therefore x∗ ∈ Ni and so

x∗ ∈
m

i=1

Mi , x∗ ∈
m

i=1

Ni.

Then

x∗ ∈ (
m

i=1

Mi)


(
m

i=1

Ni)

and the theorem is proved. 
If all the assumptions of Lemma 5.2 are established, then the optimal solutions
of IQP are the extreme points, and the best and the worst case (BWC) method
is a technique to finding a region of optimal solutions to the IQP problem. This
technique has been studied in the interval linear programming (ILP) problems
[2]. The related algorithm for determining of accurate set of optimal solutions
for IQP has been shown in Algorithm 5.4.

In the next section, we compare the solution regions with examples.

Algoritm 5.4. Determining of optimal solution set for IQP (3)

1- Suppose the IQP (3)

2- Obtain the lower and upper bounds of the objective function by models (5)
and (6)

3- If m = n and all of the feasible solution components to BP are positive,
then

3-1. Obtain Mi and Ni
3-2. The optimal solution set of IQP is equal to

� m

i=1

Mi


∩
� m

i=1

Ni

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4- else, we can only obtain the lower and upper bounds of the IQP

5- end.

6. Numerical Examples

In this section, we solve two examples by using the technique mentioned in
Theorem 5.3 to compute a set of optimal solutions. All calculations and drawing
figures have been done by Maple software.

Example 6.1. Consider the IQP as follows

min 3x2
1 + 10x1x2 + 12x2

2 + [−7,−4]x1 + [10, 14]x2

s.t. [−15,−13]x1 + [1, 2]x2  [−11,−10]
[1, 2]x1 + [−9,−8]x2  [−33,−32]

x1, x2  0

The best problem of the above IQP is

min 3x2
1 + 10x1x2 + 12x2

2 − 7x1 + 10x2

s.t. − 15x1 + x2  −10
x1 − 9x2  −32

x1, x2  0

This quadratic programming problem has the optimal value of the objective
function f− = 226.4321 and the optimal solution x∗− =

�
0.9104
3.6567


, which x∗−

is an extreme point of the feasible region of the above IQP. If we solve all
of the characteristic problems and also the worst problem, we observe that
their optimal solutions are extreme points and the accuracy of Lemma 5.2 is
investigated.

The worst problem has the optimal value f+ = 377.63 and the optimal solution
x∗+=

�
1.54
4.51


. The same optimal solutions are obtained using the proposed

method at [16]. A set of optimal solutions obtained from the intersection of
the region created by the constraints of BP and the constraints of WP with
the inverse sign (briefly, intersection technique) is shown in Figure 4.

Figure 5 shows the solution regions by using the BWC and intersection tech-
niques. Comparing these two techniques shows that the BWC box includes
infeasible solutions, while the solution region obtained by intersection tech-
nique does not include infeasible solutions and specifies an exact set of optimal
solutions.
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Figure 3. (Example 6.) The WP feasible region.
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Figure 1: (Example 6.1) Some of the optimal solutions of characteristic
problems.

which x∗− is an extreme point of the feasible region of the above IQP.
If we solve all of the characteristic problems and also the worst prob-
lem, we observe that their optimal solutions are extreme points and the
accuracy of Lemma 5.2 is investigated.
The worst problem has the optimal value f+ = 377.63 and the optimal
solution x∗+=

�
1.54
4.51


. The same optimal solutions are obtained using the

proposed method at [16].
A set of optimal solutions obtained from the intersection of the region
created by the constraints of BP and the constraints of WP with the
inverse sign (briefly, intersection technique) is shown in Figure 4.
Figure 5 shows the solution regions by using the BWC and intersection
techniques. Comparing these two techniques shows that the BWC box
includes infeasible solutions, while the solution region obtained by inter-
section technique does not include infeasible solutions and specifies an
exact set of optimal solutions.

Example 6.2. Consider the following IQP problem

min [11, 15]x21 + [−3,−1]x1x2 − 4x22 + [−23,−15]x1 + [7, 9]x2

s.t. [−4,−2]x1 + [1.8, 2]x2 ≤ [15, 17]
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Figure 2: (Example 6.1) The BP feasible region.

Figure 3: (Example 6.1) The WP feasible region.
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Figure 2: (Example 6.1) The BP feasible region.

Figure 3: (Example 6.1) The WP feasible region.
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Figure 4. (Example 6.) A set of optimal solutions.

Figure 5. (Example 6.) Comparison of the solution regions.

Example 6.2. Consider the following IQP problem

min [11, 15]x2
1 + [−3,−1]x1x2 − 4x2

2 + [−23,−15]x1 + [7, 9]x2

s.t. [−4,−2]x1 + [1.8, 2]x2  [15, 17]

[5.5, 6]x1 + [−2.2,−2]x2  [−13,−11]

x1, x2  0

For this problem, the optimal values of the characteristic problems are located
in the interval f± = [f− , f+] = [−7497, −191.75] and the optimal solutions
of the best and worst problems are x∗−=

�
16
45


and x∗+=

�
0.5
8


, respectively.

The optimal solution x∗−is an extreme point, so all of the optimal solutions
to the characteristic problems are extreme points.

Comparison of the optimal solution regions is shown in Figure 6.
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It is noticeable that the solution region of intersection technique is far better
than the BWC solution region.
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Figure 7. (Example 6.) Some of the optimal solutions of characteristic
problems.

7. Conclusion

The methods so far proposed to solve IQP problems most dealing with deter-
mining the objective function bounds, and no method is presented to achieve
a set of optimal solutions. In this paper, we obtained a set of optimal solutions
to the IQP problem when the feasible solution components of the BP were
positive and m = n.

Under the above conditions, if the optimal solution of the BP is an extreme
point, then the optimal solution of each characteristic problem will be extreme
point and also a set of optimal solutions to the IQP problem obtained from the
intersection of the region created by the constraints of BP and the constraints
of WP with inverse sign.
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Figure 7: (Example 6.2) Some of the optimal solutions of characteristic
problems.

set of optimal solutions to the IQP problem when the feasible solution
components of the BP were positive and m = n.
Under the above conditions, if the optimal solution of the BP is an
extreme point, then the optimal solution of each characteristic problem
will be extreme point and also a set of optimal solutions to the IQP
problem obtained from the intersection of the region created by the
constraints of BP and the constraints of WP with inverse sign.
Also, the above conditions put the set of optimal solutions in the BWC
box, so BWC technique for the IQP problem is used.
By examples, we showed that the optimal solution region obtained by
the intersection technique is better than the optimal solution region
obtained by BWC technique.
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[5.5, 6]x1 + [−2.2,−2]x2 ≤ [−13,−11]

x1, x2 ≥ 0

For this problem, the optimal values of the characteristic problems
are located in the interval f± = [f− , f+] = [−7497, −191.75] and
the optimal solutions of the best and worst problems are x∗−=

�
16
45



and x∗+=
�
0.5
8


, respectively.

The optimal solution x∗−is an extreme point, so all of the optimal
solutions to the characteristic problems are extreme points.

Comparison of the optimal solution regions is shown in Figure 6.

It is noticeable that the solution region of intersection technique is far
better than the BWC solution region.

7 Conclusion

The methods so far proposed to solve IQP problems most dealing with
determining the objective function bounds, and no method is presented
to achieve a set of optimal solutions. In this paper, we obtained a
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Also, the above conditions put the set of optimal solutions in the BWC box,
so BWC technique for the IQP problem is used.

By examples, we showed that the optimal solution region obtained by the
intersection technique is better than the optimal solution region obtained by
BWC technique.
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