Journal of Mathematical Extension Vol. 14, No. 3, (2020), 85-95 ISSN: 1735-8299 URL: http://www.ijmex.com Original Research Paper

Some Properties of Composition Operators on Cesáro Function Spaces

F. Jafari

Shiraz Branch, Islamic Azad University

Z. Kamali^{*}

Shiraz Branch, Islamic Azad University

Abstract. In this paper, we discuss about bounded, isometric and hypercyclic composition operators on Cesáro function spaces.

AMS Subject Classification: 47A16; 47B33; 47B38 **Keywords and Phrases:** Composition operator, Cesáro function spaces, hypercyclic operators

1. Introduction

Let (X, S, μ) be a σ -finite measure space and let $L^0 = L^0(X)$ denote the set of all equivalence classes of complex valued measurable functions defined on X. For $1 \leq p < \infty$, $L^p(\mu) = L^p(X, S, \mu)$ is the set of all $f \in L^0$ such that

$$||f||_p = \left(\int_X |f|^p \, d\mu\right)^{\frac{1}{p}} < \infty.$$

For $1 \leq p < \infty$ and X = [0, 1] or $X = [0, \infty)$, the Cesáro function spaces are denoted by $Ces_p(X)$ and are defined as

$$Ces_p(X) = \{ f \in L^0(X) : \int_X (\frac{1}{x} \int_0^x |f(t)| d\mu(t))^p d\mu(x) < \infty \}.$$

Received: November 2018; Accepted: February 2019

^{*}Corresponding author

The Cesáro function spaces $Ces_p(X)$ are Banach spaces under the norm

$$\|f\| = \left(\int_X (\frac{1}{x} \int_0^x |f(t)| d\mu(t))^p d\mu(x)\right)^{\frac{1}{p}} \quad for \ 1 \le p < \infty$$

and for $p = \infty$,

$$||f||_{\infty} = \sup_{x>0} \frac{1}{x} \int_{0}^{x} |f(t)| d\mu(t) < \infty.$$

The Cesáro function space $Ces_p[0,\infty)$ for $1 \leq p \leq \infty$ was considered by Shiue [13], Hassard and Hussein [8] and Sy, Zhang and Lee [15]. Recently Astashkin and Maligranda proved that the Cesáro function spaces $Ces_p(X)$ on both X = [0,1] and $X = [0,\infty)$ for 1 are notreflexive and they do not have the fixed point property [1, 2]. In [3] $authers investigated Rademacher sums in <math>Ces_p[0,1]$ for $1 \leq p \leq \infty$.

A measurable transformation $T: X \to X$ is called **non** – **singular** if $\mu T^{-1}(E) = \mu(T^{-1}(E)) = 0$ whenever $\mu(E) = 0$ for all $E \in S$. This condition means that the measure μT^{-1} is absolutely continuous with respect to μ . (It is usually denoted $\mu T^{-1} \ll \mu$). Then the Radon-Nikodym theorem assures the existence of a unique non-negative measurable function $h \in L^1(\mu)$ on X such that $\mu T^{-1}(E) = \int_E h(t)d\mu(t)$ for all $E \in S$. h is said to be the **Radon** – **Nikodym derivative** and denoted by $\frac{d\mu T^{-1}}{d\mu}$. A non-singular measurable transformation T induces a well-defined composition operator C_T from $Ces_p(X)$ into itself defined by $C_T f(x) = f(T(x))$ for $x \in X$ and $f \in Ces_p(X)$. There are examples to show that if T is not non-singular transformation, then C_T is not well-defined. (See [14, Page 18]) The measurable transformation $T : X \to X$ is said to be **measure preserving** if $\mu(T^{-1}(E)) = \mu(E)$ for every $E \in S$. A set $E \in S$ is called \mathbf{T} – **invariant** if $T^{-1}(E) = E$.

A bounded linear operator T on Banach space X is (**weakly**)**hypercyclic** if there exists a vector $x \in X$ such that the orbit of x under T,

$$Orb(T, x) := \{T^n x : n \in \mathbb{N} \cup \{0\}\}\$$

is (weakly)dense in X. Every such vector x is called (weakly)hypercyclic vector for T.

86

87

The study of hypercyclic operators is in a lot of literature. The first example of a hypercyclic operator is λB for $|\lambda| < 1$, $\lambda \in \mathbb{C}$ on the space $l^2(\mathbb{N})$, where B is the backward shifts [12]. [4] is a perfect survey in this topic.

2. Boundedness of Composition Operators on $Ces_{p}(X)$

In [11] the authors claimed "as theorem" that T induces a bounded composition operator C_T on $Ces_p(X)$ if and only if there exists M > 0such that $\mu T^{-1}(E) \leq M\mu(E)$ for every $E \in S$. Moreover, $||C_T|| =$ $sup_{0 < \mu(E) < \infty} \left(\left(\frac{\mu(T^{-1}(E))}{\mu(E)} \right)^p \right)^{\frac{1}{p}}$. But here we present one example to show that the above result is not correct on $Ces_2(X)$.

Let X = [0, 1] and μ be the lebesgue measure on [0, 1]. Consider

$$T(x) = \begin{cases} 2x & , 0 \le x \le \frac{1}{2} \\ 2x - 1 & , \frac{1}{2} < x \le 1 \end{cases}$$

T is non-singular transformation and $h \equiv 1$. (For more details see [9]). For

$$f(x) = \begin{cases} 1 & , 0 \le x \le \frac{1}{2} \\ 2(1-x) & , \frac{1}{2} < x \le 1 \end{cases}$$

we have:

$$\begin{split} \|f\|^2 &= \int_0^{\frac{1}{2}} (\frac{1}{x} \int_0^x 1dt)^2 dx + \int_{\frac{1}{2}}^1 (\frac{1}{x} \int_0^x 2(1-t)dt)^2 dx \\ &= \frac{31}{24} \end{split}$$

and

$$\begin{split} \|foT\|^2 &= \int_0^{\frac{1}{4}} (\frac{1}{x} \int_0^x 1dt)^2 dx + \int_{\frac{1}{4}}^{\frac{1}{2}} (\frac{1}{x} \int_0^x 2(1-2t)dt)^2 dx \\ &+ \int_{\frac{1}{2}}^{\frac{3}{4}} (\frac{1}{x} \int_0^x 1dt)^2 dx + \int_{\frac{3}{4}}^{1} (\frac{1}{x} \int_0^x 4(1-t)dt)^2 dx = \frac{13}{6}, \end{split}$$

F. JAFARI AND Z. KAMALI

so $||C_T f|| > ||f||$, while by their claim $||C_T|| = 1$ and we must have $||C_T f|| \leq ||f||$.

Also we note that the authors frequently, use $\|\chi_E\| = \mu(E)$ for all $E \in S$. It is incorrect too, to see this, let $E = [\frac{1}{8}, \frac{1}{4}]$, so $\|\chi_E\|^p = \int_{\frac{1}{8}}^{\frac{1}{4}} (1 - \frac{1}{8t})^p dt + (2^{-3p})(\frac{2^{2(p-1)}-1}{p-1})$, but $\mu(E) = \frac{1}{8}$. For p = 2, we have $\|\chi_E\| = (\frac{15}{64} - \frac{1}{4}\ln 2)^{\frac{1}{2}} \neq \frac{1}{8}$.

In the next theorem we give necessary and sufficient conditions for boundedness of composition operators on $Ces_p(X)$ $(1 \le p < \infty)$.

Theorem 2.1. Let $T: X \to X$ be a non-singular measurable transformation such that T[0, x] = [0, x] for allmost all $x \in X$. Then T induces a bounded composition operator C_T on $Ces_p(X)$ $(1 \le p < \infty)$. if and only if there exists M > 0 such that $\mu T^{-1}(E) \le M\mu(E)$ for every $E \in S$.

Proof. For $f \in Ces_p(X)$:

$$||C_T f||^p = \int_X \left(\frac{1}{x} \int_0^x |(foT)(t)| d\mu(t)\right)^p d\mu(x).$$

Now, by change of variable formula for $x \in X$ we have:

$$\int_0^x |foT(t)| d\mu(t) = \int_{T[0,x]} |f(r)| d\mu(T^{-1}(r)).$$

Since T[0, x] = [0, x] a.e. and by assumption $h \leq M$ we have:

$$\begin{aligned} \|C_T f\|^p &= \int_X \left(\frac{1}{x} \int_0^x |(foT)(t)| d\mu(t)\right)^p d\mu(x) = \int_X \left(\frac{1}{x} \int_0^x |f(r)| d\mu(T^{-1}(r))\right)^p d\mu(x) \\ &= \int_X \left(\frac{1}{x} \int_0^x |f(r)| h \ d\mu(r)\right)^p d\mu(x) \leqslant M^p \|f\|^p. \end{aligned}$$

So $||C_T f|| \leq M ||f||$ and C_T is bounded on $Ces_p(X)$. Let $||C_T|| = M$, for all $n \in \mathbb{N}$, $E_n = \{t \in X : h(t) > M + \frac{1}{n}\}$ and $E = \{t \in X : h(t) > M\}$. Then

$$\|C_T \chi_{E_n}\|^p = \int_X \left(\frac{1}{x} \int_0^x \chi_{E_n} oT(t) d\mu(t)\right)^p d\mu(x) = \int_X \left(\frac{1}{x} \int_0^x (\chi_{E_n}(t) h(t) d\mu(t))^p d\mu(x)\right)^p d\mu(x)$$

$$\geq (M + \frac{1}{n})^p \int_X \left(\frac{1}{x} \int_0^x \chi_{E_n}(t) d\mu(t)\right)^p d\mu(x) \geq M^p \|\chi_{E_n}\|^p.$$

So $\mu(E_n) = 0$. Since $E = \bigcup E_n$, hence $\mu(E) = 0$ and $h \leq M$ a.e.. \Box

Corollary 2.2. Let $T: X \to X$ be a non-singular measurable transformation such that [0, x] is T-invariant set for allmost all $x \in X$. Then T induces a bounded composition operator C_T on $Ces_p(X)$ if and only if there exists M > 0 such that $\mu T^{-1}(E) \leq M\mu(E)$ for every $E \in S$.

Proof. Since [0, x] is T - invariant set for allmost all $x \in X$, so $T^{-1}[0, x] = [0, x]$. Therefore T[0, x] = [0, x]. The rest of proof follows as previous theorem. \Box

3. Isometric Composition Operators on $Ces_{p}(X)$

In this section we give an counter example to show that the result in [11] is false. They claimed that C_T is an isometry if and only if T is a non-singular measure preserving transformation. Measure preserving is not sufficient for C_T to be isometry.

Let T as defined before in the previous section and let f(t) = t + 1. Easy calculations show that

$$\|f\|^p = \int_0^1 \left(\frac{1}{x} \int_0^x (t+1)dt\right)^p dx = \frac{2\left(\frac{3}{2}\right)^{p+1} - 2}{p+1}$$
$$\|C_T f\|^p = \int_0^{\frac{1}{2}} \left(\frac{1}{x} \int_0^x (2t+1)dt\right)^p dx + \int_{\frac{1}{2}}^1 \left(\frac{1}{x} \int_0^x 2tdt\right)^p dx = \frac{\left(\frac{1}{2}\right)^{p+1}(3^{p+1}-1)}{p+1}.$$

Hence $||C_T f|| \neq ||f||$.

Theorem 3.1. Let $T: X \to X$ be a non-singular measurable transformation such that T[0, x] = [0, x] for all most all $x \in X$. Then composition operator C_T on $Ces_p(X)$ is an isometry if and only if T is a measure preserving transformation.

Proof. Since T is a measure preserving transformation, so h = 1 a.e. We have for $f \in Ces_p(X)$:

$$||C_T f||^p = \int_X \left(\frac{1}{x} \int_0^x |(foT)(t)| d\mu(t)\right)^p d\mu(x).$$

Now, by change of variable formula:

$$\int_0^x |foT(t)| d\mu(t) = \int_{T[0,x]} |f(r)| d\mu(T^{-1}(r)).$$

Since T[0, x] = [0, x] a.e., we have:

$$\int_X \left(\frac{1}{x} \int_0^x |(foT)(t)| d\mu(t)\right)^p d\mu(x) = \int_X \left(\frac{1}{x} \int_0^x |f(r)| d\mu(T^{-1}(r))\right)^p d\mu(x)$$
$$= \int_X \left(\frac{1}{x} \int_0^x |f(r)| h \ d\mu(r)\right)^p d\mu(x) = \|f\|^p.$$
Therefore $\|C_T f\| = \|f\|$.

Therefore $||C_T f|| = ||f||$.

Conversely, suppose C_T is an isometry. Let $E = \{t \in X : h(t) > 1\}$ and for all $n \in \mathbb{N}, E_n = \{t \in X : h(t) > 1 + \frac{1}{n}\}.$

$$\|C_T \chi_{E_n}\|^p = \int_X \left(\frac{1}{x} \int_0^x (\chi_{E_n}(t) \ h(t) d\mu(t))\right)^p d\mu(x)$$

=
$$\int_X \left(\frac{1}{x} \int_0^x \chi_{E_n}(t) d\mu(t)\right)^p d\mu(x) = \|\chi_{E_n}\|$$

Then $\int_0^x (h(t)\chi_{E_n}(t) - \chi_{E_n}(t)) d\mu(t) = 0$ a.e. So $h(t)\chi_{E_n}(t) = \chi_{E_n}$ a.e. We get $\mu(E_n) = 0$, since $E = \bigcup E_n$, $\mu(E) = 0$. Now let $F = \{t \in X : h(t) < 1\}$. Similary; $\mu(F) = 0$, and finally h = 1 a.e.. \Box

4. Hypercyclic Composition Operators on $Ces_{p}(X)$

In this section we discuss about hypercyclic properties of composition operators on $\text{Ces}\acute{a}$ ro function spaces.

Lemma 4.1. If T is a non-singular transformation and $\frac{d\mu T^{-1}}{d\mu} = h$, then for all $n \in \mathbb{N}$, T^n is also non-singular transformation and $\frac{d\mu T^{-n}}{d\mu} = \prod_{j=0}^{n-1} hoT^{-j}$. Moreover; if T is invertible and its inverse is also nonsingular transformation, then for all $n \in \mathbb{N}$, $\frac{d\mu T^n}{d\mu} = (\prod_{j=1}^n hoT^j)^{-1}$.

Proof. We use induction on *n*. This is true for n = 1. Suppose it is true for *n*, we prove for n + 1. Let $E \in S$ and $\mu(E) < \infty$, so

$$\mu T^{-(n+1)}(E) = \mu T^{-n}(T^{-1}(E)) = \int_{T^{-1}(E)} \prod_{j=0}^{n-1} hoT^{-j}d\mu.$$

By change of variable:

$$\mu T^{-(n+1)}(E) = \int_E \prod_{j=1}^n hoT^{-j}d\mu T^{-1} = \int_E h \prod_{j=1}^n hoT^{-j}d\mu = \int_E \prod_{j=0}^n hoT^{-j}d\mu.$$

By uniqueess of Radon-Nikodym derivative theorem, we have:

$$\frac{d\mu T^{-n}}{d\mu} = \prod_{j=0}^{n-1} hoT^{-j}.$$

For $E \in S$, we have:

$$\int_{E} h(T(x))d\mu T(x) = \int_{T(E)} h(r)d\mu(r) = \mu(T^{-1}(T(E))) = \mu(E).$$

So $\frac{d\mu}{d\mu T} = hoT$ or $\frac{d\mu T}{d\mu} = \frac{1}{hoT}$. The rest of proof follows as before. \Box Kitai [10] presented the hypercyclicity criterion. This criterion was independently improved by Gethner and Shapiro [6]. Eventually, the most general example of this criterion was expressed by Bés [5].

Hyperciclicity Criterion. ([4]) Suppose T is a continuous linear operator on a separable Banach space X, for which the sequence of nonnegative powers (T^n) tends pointwise to zero on a dense subset of X. Suppose further that there is a (possibly different) dense subset Y of X, and a (possibly discontinuous) map $S: Y \to Y$ such that TS = identity on Y, and (S^n) tends point-wise to zero on Y. Then T is hypercyclic.

Note: Hassard and Hussein [8] proved that $Ces_p(X)$ are separable Banach spaces for $1 and in the case <math>p = \infty$ is not separable. Since hypercyclicity make sense only if the underlying space is separable, then we omit the case $p = \infty$. Also, $Ces_1[0, \infty) = \{0\}$ and $Ces_1[0, 1] = L^1_{\omega}[0, 1]$ with $\omega(t) = ln\frac{1}{t}$, for $0 < t \leq 1$. So we consider 1 .

Theorem 4.2. Suppose $T: X \to X$ is a non-singular measurable transformation, its inverse is measurable and non-singular transformation and $C_T \in B(Ces_p(X)), (1$

If $\prod_{j=0}^{n-1} hoT^{-j} \to 0$ a.e as $n \to \infty$ and $\left(\prod_{j=1}^n hoT^j\right)^{-1} \to 0$ a.e. as $n \to \infty$, then C_T is hypercyclic on $Ces_p(X)$.

Proof. For $E \in S$ and $\mu(E) < \infty$, we have:

$$||C_T^n \chi_E|| = ||\chi_{T^{-n}(E)}||$$

Using the Hardy inequality [7, Theorem 327], we obtain that

$$\|\chi_{T^{-n}(E)}\| \leq \acute{p} \|\chi_{T^{-n}(E)}\|_p = \acute{p} \mu(T^{-n}(E)),$$

where $\acute{p} = \frac{p}{p-1}$.

Therefore by previous lemma, we have:

$$\|C_T^n \chi_E\| \leqslant \acute{p} \int_E \prod_{j=0}^{n-1} hoT^{-j}(t) d\mu(t).$$

Consider that $\prod_{j=0}^{n-1} hoT^{-j} \in L^1(\mu)$, by Lebesgue Convergence Theorem we have:

 $||C_T^n \chi_E|| \to 0 \ as \ n \to \infty.$

So for all simple function s we have:

$$||C_T^n s|| \to 0 \ as \ n \to \infty.$$

Similarly we have:

$$||C_T^{-n}s|| \to 0 \ as \ n \to \infty.$$

Since simple functions are dense in $Ces_p(X)$, thus by Hypercyclic Criterion, C_T is hypercyclic on $Ces_p(X)$. \Box

Corollary 4.3. On the condition of the above theorem, C_T is hypercyclic on $L^p(\mu)$.

Proof. Since simple functions are dense in $L^p(\mu)$ and $||C^n_T \chi(E)||_p = \mu(T^{-n}(E))$ the proof follows as before. \Box

Proposition 4.4. If C_T is (weakly)hypercyclic on $Ces_p(X)$. Then i) $T^{-1}(S) = S$ i.e. $S = \{T^{-1}(E) : E \in S\}$. ii) If $h \leq M$ a.e. and X = [0, 1], then $M \geq \frac{p-1}{p}$. iii) If T[0, x] = [0, x] a.e., then h > 1.

Proof. i) Suppose $T^{-1}(S) \neq S$. By [11, Theorem 10], since C_T has not dense range, so is not (weakly)hypercyclic.

ii) Let $M < \frac{p-1}{p}$ and for all $E_i \in S$ with $\mu(E_i) < \infty$, we have: $\|C_T \sum_{i=1}^n \chi_{E_i}\| = \|\sum_{i=1}^n C_T \chi_{E_i}\|$ $\leq \not{p} \sum_{i=1}^n \mu(T^{-1}E_i) \leq M \not{p} \sum_{i=1}^n \mu(E_i) \leq 1,$

where $\acute{p} = \frac{p}{p-1}$.

So for all simple function s we have $||C_T s|| \leq 1$, since simple functions are dense in $Ces_p(X)$; we get $||C_T|| \leq 1$. Thus C_T can not be (weakly)hypercyclic on $Ces_p(X)$.

iii) Suppose $h \leq 1$, by theorem 2.1, we have $||C_T|| \leq 1$, thus C_T is not (weakly)hypercyclic. \Box

Lemma 4.5. If Λ : $Ces_p[0,1] \to \mathbb{F}$ is defined by $\Lambda(g) = \int_0^a g(t)d\mu(t)$ for 0 < a < 1, then Λ is a bounded linear functional.

Proof. Let $0 < a < b \leq 1$ and p > 1. By [2, lemma 1] and for $g \in Ces_p([0, 1])$ we have:

$$|\Lambda(g)| = |\int_0^a g(t)d\mu(t)| \leqslant \left(\frac{p-1}{b^{1-p}-1}\right)^{\frac{1}{p}} \|g\|.$$

Hence, Λ is bounded linear functional. \Box

Theorem 4.6. Let X = [0, 1] and $T : X \to X$ is a non-singular measure preserving transformation and $C_T \in B(Ces_p(X))$. If there exists $a \in (0, 1)$ such that T[0, a] = [0, a], then C_T is not weakly hypercyclic.

Proof. Assume to reach a contradiction. Let f be a weakly hypercyclic vector for C_T . Define Λ : $Ces_p(X) \to \mathbb{F}$ such that $\Lambda(g) = \int_0^a g(t)d\mu(t)$ $(g \in Ces_p(X))$. Then Λ is a bounded linear functional. Suppose $\varepsilon > 0$ is given.

$$U = \{g \in Ces_p(X): \ |\Lambda(g)| < \varepsilon\} \ , \ V = \{g \in Ces_p(X): \ |\Lambda(g) - \Lambda(1)| < \varepsilon\}$$

are weak neighborhoods of zero and 1 respectively. So there exists $n \in \mathbb{N}$ and $m \in \mathbb{N}$ such that $C_T^n f \in V$, $C_T^m f \in U$.

$$|\Lambda(C_T^n f) - \Lambda(1)| = |\int_0^a f o T^n d\mu(t) - \int_0^a 1 d\mu(t)| = |\int_0^a f(t) d\mu(t) - a| < \varepsilon.$$

Therefore $\int_0^a f(t)d\mu(t) = a$.

Similary, for $|\Lambda(C_T^m f)| < \varepsilon$ implies that $\int_0^a f(t)d\mu(t) = 0$. It is a contradiction. \Box

References

- S. V. Astashkin and L. Maligranda, Structure of Cesáro Function Spaces, Indagations Mathematicae, 20 (3) (2009), 329–379.
- [2] S. V. Astashkin and L. Maligranda, Cesáro Function Spaces Fail the Fixed Point Property, Proc. Amer. Math. Soc., 136 (12) (2008), 4289–4294.
- [3] S. V. Astashkin and L. Maligranda, Rademacher Functions in Cesáro Type Spaces, *Studia Math.*, 198 (3) (2010), 235–247.
- [4] F. Bayart and E. Atheron, *Dynamics of Linear Operators*, Cambridge university press, 179, 2009.
- [5] J. P. Bés, Three Problem's on Hypercyclic Operators, Ph.D. thesis, Bowling Green State University, 1998.
- [6] R. M. Gethner and J. H. Shapiro, Universal Vectors for Operators on Spaces of Holomorphic Functions, *Proc. Amer. Math. Soc.*, 100 (2) (1987), 281–288.
- [7] G. H. Hardy, J. E. Littlewood and G. polya, *Inequalities*, Cambridge, Cambridge University Press, 1952.
- [8] B. D. Hassard and D. A. Hussein, On Cesáro Function Spaces, Tamkang Journal of Mathematics, 4 (1973), 19–25.
- [9] M. R. Jabbarzadeh and Y. Estaremi, Essential Norm of Subtitution Operators on L^p - Spaces, Indian J Pure Appl. Math., 43 (3) (2012), 263–278.
- [10] C. Kitai, Invariant Closed Sets for Linear Operators, Thesis, University of Toronto, 1982.
- [11] K. Raj, S. Pandoh, and S. Jamwal, Composition Operators on Cesáro Function Spaces, *Journal of Function spaces*, (2014), Article ID 501057, 6 pages.
- [12] S. Rolewicz, On Orbits of Elements, Studia. Math., 32 (1969), 17–22.

- [13] J. S. Shiue, A Note on Cesáro Function Space, Tamkang Journal of Mathematics, 1 (2) (1970), 91–95.
- [14] R. K. Singh and J. S. Manhas, Composition Operators on Function Spaces, North-Holland, 1993.
- [15] P. W. Sy, W. Y. Zhang, and P. Y. Lee, The Dual of Cesáro Function Spaces, *Glas. Mat. Ser. III*, 22 (1) (1987), 103–112.

Forough Jafari

Ph.D Student of Pure Mathematics Department of Mathematics Islamic Azad University, Shiraz Branch Shirz, Iran E-mail: fj19413@gmail.com

Zahra Kamali

Assistant Professor of Mathematics Department of Mathematics Islamic Azad University, Shiraz Branch Shiraz, Iran E-mail: zkamali@shirazu.ac.ir