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1. Introduction

Let (X,S, µ) be a σ−finite measure space and let L0 = L0(X) denote
the set of all equivalence classes of complex valued measurable functions
defined on X. For 1  p < ∞, Lp(µ) = Lp(X,S, µ) is the set of all
f ∈ L0 such that

fp =
� 

X
|f |p dµ

 1
P <∞.

For 1  p <∞ andX = [0, 1] orX = [0,∞), the Cesáro function spaces
are denoted by Cesp(X) and are defined as

Cesp(X) = {f ∈ L0(X) :


X
(
1
x

 x

0
|f(t)|dµ(t))pdµ(x) <∞}.
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The Cesáro function spaces Cesp(X) are Banach spaces under the
norm

f = (


X
(
1
x

 x

0
|f(t)|dµ(t))pdµ(x))

1
p for 1  p <∞

and for p = ∞,

f∞ = supx>0
1
x

 x

0
|f(t)|dµ(t) <∞.

The Cesáro function space Cesp[0,∞) for 1  p  ∞ was considered
by Shiue [13], Hassard and Hussein [8] and Sy, Zhang and Lee [15]. Re-
cently Astashkin and Maligranda proved that the Cesáro function spaces
Cesp(X) on both X = [0, 1] and X = [0,∞) for 1 < p < ∞ are not
reflexive and they do not have the fixed point property [1, 2]. In [3]
authers investigated Rademacher sums in Cesp[0, 1] for 1  p ∞.

A measurable transformation T : X → X is called non− singular if
µT−1(E) = µ(T−1(E)) = 0 whenever µ(E) = 0 for all E ∈ S. This
condition means that the measure µT−1 is absolutely continuous with
respect to µ. (It is usually denoted µT−1  µ). Then the Radon-
Nikodym theorem assures the existence of a unique non-negative mea-
surable function h ∈ L1(µ) on X such that µT−1(E) =


E h(t)dµ(t)

for all E ∈ S. h is said to be the Radon−Nikodym derivative and
denoted by dµT−1

dµ . A non-singular measurable transformation T induces
a well-defined composition operator CT from Cesp(X) into itself defined
by CT f(x) = f(T (x)) for x ∈ X and f ∈ Cesp(X). There are exam-
ples to show that if T is not non-singular transformation, then CT is
not well-defined. ( See [14, Page 18]) The measurable transformation
T : X → X is said to be measure preserving if µ(T−1(E)) = µ(E)
for every E ∈ S. A set E ∈ S is called T− invariant if T−1(E) = E.

A bounded linear operator T on Banach spaceX is (weakly)hypercyclic
if there exists a vector x ∈ X such that the orbit of x under T,

Orb(T, x) := {Tnx : n ∈ N ∪ {0}}

is (weakly)dense in X. Every such vector x is called (weakly)hypercyclic
vector for T .
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The study of hypercyclic operators is in a lot of literature. The first
example of a hypercyclic operator is λB for |λ| < 1, λ ∈ C on the space
l2(N), where B is the backward shifts [12]. [4] is a perfect survey in this
topic.

2. Boundedness of Composition Operators on Cesp(X)

In [11] the authors claimed “as theorem” that T induces a bounded
composition operator CT on Cesp(X) if and only if there exists M > 0
such that µT−1(E)  Mµ(E) for every E ∈ S. Moreover, CT  =

sup0<µ(E)<∞
�
(µ(T

−1(E)
µ(E) )p

 1
p . But here we present one example to show

that the above result is not correct on Ces2(X).

Let X = [0, 1] and µ be the lebesgue measure on [0, 1]. Consider

T (x) =


2x , 0  x  1
2

2x− 1 , 12 < x  1

T is non-singular transformation and h ≡ 1. (For more details see [9]).

For

f(x) =


1 , 0  x  1
2

2(1− x) , 12 < x  1

we have:

f2 =
 1

2

0
(
1
x

 x

0
1dt)2dx+

 1

1
2

(
1
x

 x

0
2(1− t)dt)2dx

=
31
24

and

foT2 =
 1

4

0
(
1
x

 x

0
1dt)2dx+

 1
2

1
4

(
1
x

 x

0
2(1− 2t)dt)2dx

+
 3

4

1
2

(
1
x

 x

0
1dt)2dx+

 1

3
4

(
1
x

 x

0
4(1− t)dt)2dx =

13
6
,
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so CT f > f, while by their claim CT  = 1 and we must have
CT f  f.
Also we note that the authors frequently, use χE = µ(E) for all E ∈
S. It is incorrect too, to see this, let E = [18 ,

1
4 ], so χEp =

 1
4
1
8

(1 −
1
8t)

p dt + (2−3p)(2
2(p−1)−1
p−1 ), but µ(E) = 1

8 . For p = 2, we have χE =
�
15
64 −

1
4 ln2)

1
2 = 1

8 .

In the next theorem we give necessary and sufficient conditions for
boundedness of composition operators on Cesp(X) (1  p <∞).

Theorem 2.1. Let T : X → X be a non-singular measurable transfor-
mation such that T [0, x] = [0, x] for allmost all x ∈ X. Then T induces a
bounded composition operator CT on Cesp(X) (1  p <∞). if and only
if there exists M > 0 such that µT−1(E) Mµ(E) for every E ∈ S.

Proof. For f ∈ Cesp(X) :

CT fp =


X

�1
x

 x

0
|(foT )(t)|dµ(t)

p
dµ(x).

Now, by change of variable formula for x ∈ X we have:
 x

0
|foT (t)|dµ(t) =



T [0,x]
|f(r)|dµ(T−1(r)).

Since T [0, x] = [0, x] a.e. and by assumption h M we have:

CT fp =


X

�1
x

 x

0
|(foT )(t)|dµ(t)

p
dµ(x) =



X

�1
x

 x

0
|f(r)|dµ(T−1(r))

p
dµ(x)

=


X

�1
x

 x

0
|f(r)|h dµ(r)

p
dµ(x) Mpfp.

So CT f Mf and CT is bounded on Cesp(X).
Let CT  = M, for all n ∈ N, En = {t ∈ X : h(t) > M + 1

n} and E =
{t ∈ X : h(t) > M}. Then

CTχEnp =


X

�1
x

 x

0
χEnoT (t)dµ(t)

p
dµ(x) =



X

�1
x

 x

0
(χEn(t) h(t)dµ(t)

p
dµ(x)
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 (M +
1
n

)p


X

�1
x

 x

0
χEn(t)dµ(t)

p
dµ(x) MpχEnp.

So µ(En) = 0. Since E = ∪En, hence µ(E) = 0 and h M a.e.. 

Corollary 2.2. Let T : X → X be a non-singular measurable transfor-
mation such that [0, x] is T − invariant set for allmost all x ∈ X. Then
T induces a bounded composition operator CT on Cesp(X) if and only
if there exists M > 0 such that µT−1(E) Mµ(E) for every E ∈ S.

Proof. Since [0, x] is T − invariant set for allmost all x ∈ X, so
T−1[0, x] = [0, x]. Therefore T [0, x] = [0, x]. The rest of proof follows
as previous theorem. 

3. Isometric Composition Operators on Cesp(X)

In this section we give an counter example to show that the result in
[11] is false. They claimed that CT is an isometry if and only if T is a
non-singular measure preserving transformation. Measure preserving is
not sufficient for CT to be isometry.

Let T as defined before in the previous section and let f(t) = t+1. Easy
calculations show that

fp =
 1

0
(
1
x

 x

0
(t+ 1)dt)pdx =

2(32)p+1 − 2
p+ 1

CT fp =
 1

2

0
(
1
x

 x

0
(2t+1)dt)pdx+

 1

1
2

(
1
x

 x

0
2tdt)pdx =

(12)p+1(3p+1 − 1)
p+ 1

.

Hence CT f = f.

Theorem 3.1. Let T : X → X be a non-singular measurable transfor-
mation such that T [0, x] = [0, x] for allmost all x ∈ X. Then composition
operator CT on Cesp(X) is an isometry if and only if T is a measure
preserving transformation.

Proof. Since T is a measure preserving transformation, so h = 1 a.e.

We have for f ∈ Cesp(X) :

CT fp =
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X

�1
x

 x
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|(foT )(t)|dµ(t)

p
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1
n

)p


X

�1
x

 x

0
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p
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1
x

 x

0
(t+ 1)dt)pdx =
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p+ 1

CT fp =
 1

2

0
(
1
x

 x

0
(2t+1)dt)pdx+

 1

1
2
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1
x

 x

0
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p+ 1

.

Hence CT f = f.

Theorem 3.1. Let T : X → X be a non-singular measurable transfor-
mation such that T [0, x] = [0, x] for allmost all x ∈ X. Then composition
operator CT on Cesp(X) is an isometry if and only if T is a measure
preserving transformation.

Proof. Since T is a measure preserving transformation, so h = 1 a.e.

We have for f ∈ Cesp(X) :

CT fp =


X

�1
x

 x

0
|(foT )(t)|dµ(t)

p
dµ(x).

SOME PROPERtIES OF COMPOSITION ... 89

 (M +
1
n

)p


X

�1
x

 x

0
χEn(t)dµ(t)

p
dµ(x) MpχEnp.

So µ(En) = 0. Since E = ∪En, hence µ(E) = 0 and h M a.e.. 

Corollary 2.2. Let T : X → X be a non-singular measurable transfor-
mation such that [0, x] is T − invariant set for allmost all x ∈ X. Then
T induces a bounded composition operator CT on Cesp(X) if and only
if there exists M > 0 such that µT−1(E) Mµ(E) for every E ∈ S.

Proof. Since [0, x] is T − invariant set for allmost all x ∈ X, so
T−1[0, x] = [0, x]. Therefore T [0, x] = [0, x]. The rest of proof follows
as previous theorem. 

3. Isometric Composition Operators on Cesp(X)

In this section we give an counter example to show that the result in
[11] is false. They claimed that CT is an isometry if and only if T is a
non-singular measure preserving transformation. Measure preserving is
not sufficient for CT to be isometry.

Let T as defined before in the previous section and let f(t) = t+1. Easy
calculations show that

fp =
 1

0
(
1
x

 x

0
(t+ 1)dt)pdx =

2(32)p+1 − 2
p+ 1

CT fp =
 1

2

0
(
1
x

 x

0
(2t+1)dt)pdx+

 1

1
2

(
1
x

 x

0
2tdt)pdx =

(12)p+1(3p+1 − 1)
p+ 1

.

Hence CT f = f.

Theorem 3.1. Let T : X → X be a non-singular measurable transfor-
mation such that T [0, x] = [0, x] for allmost all x ∈ X. Then composition
operator CT on Cesp(X) is an isometry if and only if T is a measure
preserving transformation.

Proof. Since T is a measure preserving transformation, so h = 1 a.e.

We have for f ∈ Cesp(X) :

CT fp =


X

�1
x

 x

0
|(foT )(t)|dµ(t)

p
dµ(x).



90 F. JAFARI AND Z. KAMALI

Now, by change of variable formula:
 x

0
|foT (t)|dµ(t) =



T [0,x]
|f(r)|dµ(T−1(r)).

Since T [0, x] = [0, x] a.e., we have:


X

�1
x

 x

0
|(foT )(t)|dµ(t)

p
dµ(x) =



X

�1
x

 x

0
|f(r)|dµ(T−1(r))

p
dµ(x)

=


X

�1
x

 x

0
|f(r)|h dµ(r)

p
dµ(x) = fp.

Therefore CT f = f.
Conversely, suppose CT is an isometry. Let E = {t ∈ X : h(t) >

1} and for all n ∈ N, En = {t ∈ X : h(t) > 1 + 1
n}.

CTχEnp =


X

�1
x

 x

0
(χEn(t) h(t)dµ(t)

p
dµ(x)

=


X

�1
x

 x

0
χEn(t)dµ(t)

p
dµ(x) = χEn.

Then
 x
0

�
h(t)χEn(t)− χEn(t)


dµ(t) = 0 a.e. So h(t)χEn(t) = χEn a.e.

We get µ(En) = 0, since E = ∪En, µ(E) = 0. Now let F = {t ∈ X :
h(t) < 1}. Similary; µ(F ) = 0, and finally h = 1 a.e.. 

4. Hypercyclic Composition Operators on Cesp(X)

In this section we discuss about hypercyclic properties of composition
operators on Cesáro function spaces.

Lemma 4.1. If T is a non-singular transformation and dµT−1

dµ = h,

then for all n ∈ N, Tn is also non-singular transformation and dµT−n

dµ =
n−1

j=0 hoT
−j . Moreover; if T is invertible and its inverse is also non-

singular transformation, then for all n ∈ N, dµTn

dµ =
�n

j=1 hoT
j
−1

.

Proof. We use induction on n. This is true for n = 1. Suppose it is true
for n, we prove for n+ 1. Let E ∈ S and µ(E) <∞, so

µT−(n+1)(E) = µT−n(T−1(E)) =


T−1(E)

n−1

j=0

hoT−jdµ.
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operators on Cesáro function spaces.

Lemma 4.1. If T is a non-singular transformation and dµT−1

dµ = h,

then for all n ∈ N, Tn is also non-singular transformation and dµT−n

dµ =
n−1

j=0 hoT
−j . Moreover; if T is invertible and its inverse is also non-

singular transformation, then for all n ∈ N, dµTn

dµ =
�n

j=1 hoT
j
−1

.

Proof. We use induction on n. This is true for n = 1. Suppose it is true
for n, we prove for n+ 1. Let E ∈ S and µ(E) <∞, so

µT−(n+1)(E) = µT−n(T−1(E)) =


T−1(E)

n−1

j=0

hoT−jdµ.

90 F. JAFARI AND Z. KAMALI

Now, by change of variable formula:
 x

0
|foT (t)|dµ(t) =



T [0,x]
|f(r)|dµ(T−1(r)).

Since T [0, x] = [0, x] a.e., we have:


X

�1
x

 x

0
|(foT )(t)|dµ(t)

p
dµ(x) =



X

�1
x

 x

0
|f(r)|dµ(T−1(r))

p
dµ(x)

=


X

�1
x

 x

0
|f(r)|h dµ(r)

p
dµ(x) = fp.

Therefore CT f = f.
Conversely, suppose CT is an isometry. Let E = {t ∈ X : h(t) >

1} and for all n ∈ N, En = {t ∈ X : h(t) > 1 + 1
n}.

CTχEnp =


X

�1
x

 x

0
(χEn(t) h(t)dµ(t)

p
dµ(x)

=


X

�1
x

 x

0
χEn(t)dµ(t)

p
dµ(x) = χEn.

Then
 x
0

�
h(t)χEn(t)− χEn(t)


dµ(t) = 0 a.e. So h(t)χEn(t) = χEn a.e.

We get µ(En) = 0, since E = ∪En, µ(E) = 0. Now let F = {t ∈ X :
h(t) < 1}. Similary; µ(F ) = 0, and finally h = 1 a.e.. 

4. Hypercyclic Composition Operators on Cesp(X)

In this section we discuss about hypercyclic properties of composition
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By change of variable:

µT−(n+1)(E) =


E

n

j=1

hoT−jdµT−1 =


E
h

n

j=1

hoT−jdµ =


E

n

j=0

hoT−jdµ.

By uniquness of Radon-Nikodym derivative theorem, we have:

dµT−n

dµ
=

n−1

j=0

hoT−j .

For E ∈ S, we have:


E
h(T (x))dµT (x) =



T (E)
h(r)dµ(r) = µ(T−1(T (E)) = µ(E).

So dµ
dµT = hoT or dµT

dµ = 1
hoT . The rest of proof follows as before. 

Kitai [10] presented the hypercyclicity criterion. This criterion was in-
dependently improved by Gethner and Shapiro [6]. Eventually, the most
general example of this criterion was expressed by Bés [5].

Hyperciclicity Criterion. ([4]) Suppose T is a continuous linear op-
erator on a separable Banach space X, for which the sequence of non-
negative powers (Tn) tends pointwise to zero on a dense subset ofX. Sup-
pose further that there is a (possibly different) dense subset Y of X, and
a (possibly discontinuous) map S : Y → Y such that TS = identity on
Y , and (Sn) tends point-wise to zero on Y . Then T is hypercyclic.

Note: Hassard and Hussein [8] proved that Cesp(X) are separable Ba-
nach spaces for 1 < p <∞ and in the case p = ∞ is not separable. Since
hypercyclicity make sense only if the underlying space is separable, then
we omit the case p = ∞. Also, Ces1[0,∞) = {0} and Ces1[0, 1] =
L1ω[0, 1] with ω(t) = ln1t , for 0 < t  1. So we consider 1 < p <∞.

Theorem 4.2. Suppose T : X → X is a non-singular measurable trans-
formation, its inverse is measurable and non-singular transformation
and CT ∈ B(Cesp(X)), (1 < p <∞).

If
n−1

j=0 hoT
−j → 0 a.e as n → ∞ and

�n
j=1 hoT

j
−1 →

0 a.e. as n→∞, then CT is hypercyclic on Cesp(X).
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Proof. For E ∈ S and µ(E) <∞, we have:

Cn
TχE = χT−n(E).

Using the Hardy inequality [7, Theorem 327], we obtain that

χT−n(E)  ṕ χT−n(E)p = ṕ µ(T−n(E)),

where ṕ = p
p−1 .

Therefore by previous lemma, we have:

Cn
TχE  ṕ



E

n−1

j=0

hoT−j(t)dµ(t).

Consider that
n−1

j=0 hoT
−j ∈ L1(µ), by Lebesgue Convergence Theorem

we have:
Cn

TχE → 0 as n→∞.

So for all simple function s we have:

Cn
T s → 0 as n→∞.

Similarly we have:
C−nT s → 0 as n→∞.

Since simple functions are dense in Cesp(X), thus by Hypercyclic Cri-
terion, CT is hypercyclic on Cesp(X). 

Corollary 4.3. On the condition of the above theorem, CT is hypercyclic
on Lp(µ).

Proof. Since simple functions are dense in Lp(µ) and Cn
Tχ(E)p =

µ(T−n(E)) the proof follows as before. 

Proposition 4.4. If CT is (weakly)hypercyclic on Cesp(X). Then
i) T−1(S) = S i.e. S = {T−1(E) : E ∈ S}.
ii) If h M a.e. and X = [0, 1], then M  p−1

p .

iii) If T [0, x] = [0, x] a.e., then h > 1.

Proof. i) Suppose T−1(S) = S. By [11, Theorem 10], since CT has not
dense range, so is not (weakly)hypercyclic.
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ii) Let M < p−1
p and for all Ei ∈ S with µ(Ei) <∞, we have:

CT
n

i=1

χEi = 
n

i=1

CTχEi

 ṕ
n

i=1

µ(T−1Ei) Mṕ
n

i=1

µ(Ei)  1,

where ṕ = p
p−1 .

So for all simple function s we have CT s  1, since simple func-
tions are dense in Cesp(X); we get CT   1. Thus CT can not be
(weakly)hypercyclic on Cesp(X).

iii) Suppose h  1, by theorem 2.1, we have CT   1, thus CT is not
(weakly)hypercyclic. 

Lemma 4.5. If Λ : Cesp[0, 1] → F is defined by Λ(g) =
 a
0 g(t)dµ(t) for 0 <

a < 1, then Λ is a bounded linear functional.

Proof. Let 0 < a < b  1 and p > 1. By [2, lemma 1] and for
g ∈ Cesp([0, 1]) we have:

|Λ(g)| = |
 a

0
g(t)dµ(t)| 

� p− 1
b1−p − 1

 1
p g.

Hence, Λ is bounded linear functional. 

Theorem 4.6. Let X = [0, 1] and T : X → X is a non-singular measure
preserving transformation and CT ∈ B(Cesp(X)). If there exists a ∈
(0, 1) such that T [0, a] = [0, a], then CT is not weakly hypercyclic.

Proof. Assume to reach a contradiction. Let f be a weakly hyper-
cyclic vector for CT . Define Λ : Cesp(X) → F such that Λ(g) = a
0 g(t)dµ(t) (g ∈ Cesp(X)). Then Λ is a bounded linear functional. Sup-

pose ε > 0 is given.

U = {g ∈ Cesp(X) : |Λ(g)| < ε} , V = {g ∈ Cesp(X) : |Λ(g)−Λ(1)| < ε}

are weak neighborhoods of zero and 1 respectively. So there exists n ∈ N
and m ∈ N such that Cn

T f ∈ V, Cm
T f ∈ U.

|Λ(Cn
T f)−Λ(1)| = |

 a

0
foTndµ(t)−

 a

0
1dµ(t)| = |

 a

0
f(t)dµ(t)−a| < ε.
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p−1 .

So for all simple function s we have CT s  1, since simple func-
tions are dense in Cesp(X); we get CT   1. Thus CT can not be
(weakly)hypercyclic on Cesp(X).

iii) Suppose h  1, by theorem 2.1, we have CT   1, thus CT is not
(weakly)hypercyclic. 

Lemma 4.5. If Λ : Cesp[0, 1] → F is defined by Λ(g) =
 a
0 g(t)dµ(t) for 0 <

a < 1, then Λ is a bounded linear functional.

Proof. Let 0 < a < b  1 and p > 1. By [2, lemma 1] and for
g ∈ Cesp([0, 1]) we have:

|Λ(g)| = |
 a

0
g(t)dµ(t)| 

� p− 1
b1−p − 1

 1
p g.
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Theorem 4.6. Let X = [0, 1] and T : X → X is a non-singular measure
preserving transformation and CT ∈ B(Cesp(X)). If there exists a ∈
(0, 1) such that T [0, a] = [0, a], then CT is not weakly hypercyclic.
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cyclic vector for CT . Define Λ : Cesp(X) → F such that Λ(g) = a
0 g(t)dµ(t) (g ∈ Cesp(X)). Then Λ is a bounded linear functional. Sup-
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U = {g ∈ Cesp(X) : |Λ(g)| < ε} , V = {g ∈ Cesp(X) : |Λ(g)−Λ(1)| < ε}

are weak neighborhoods of zero and 1 respectively. So there exists n ∈ N
and m ∈ N such that Cn

T f ∈ V, Cm
T f ∈ U.

|Λ(Cn
T f)−Λ(1)| = |

 a

0
foTndµ(t)−

 a

0
1dµ(t)| = |

 a

0
f(t)dµ(t)−a| < ε.
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Therefore
 a
0 f(t)dµ(t) = a.

Similary, for |Λ(Cm
T f)| < ε implies that

 a
0 f(t)dµ(t) = 0. It is a contra-

diction. 
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