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Abstract. In this paper, we first give a lemma, for twice differentiable
function to obtain trapezoid and midpoint inequalities. By using this
lemma, we establish some inequalities for mapping whose second deriva-
tives in absolute value are convex via Riemann-Liouville fractional inte-
grals. These results generalize the midpoint and trapezoid inequalities
involving Riemann-Liouville fractional integrals given in earlier studies.
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1. Introduction

The inequalities discovered by C. Hermite and J. Hadamard for convex
functions are considerable significant in the literature (see, e.g.,[6], [9],
[20, p.137]). These inequalities state that if f : I — R is a convex
function on the interval I of real numbers and a,b € I with a < b, then
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Both inequalities hold in the reversed direction if f is concave. We
note that Hadamard’s inequality may be regarded as a refinement of
the concept of convexity and it follows easily from Jensen’s inequal-
ity. Hadamard’s inequality for convex functions has received renewed
attention in recent years and a remarkable variety of refinements and
generalizations have been found (see, for example, [1]-[4], [7], [12], [14],
(18], [19], [21], [23], [27], [28], [31], [32]) and the references cited therein.

In the following, we will give some necessary definitions and mathemat-
ical preliminaries of fractional calculus theory which are used further in
this paper. More details, one can consult ([8], [13], [15]).

Definition 1.1. Let f € Li[a,b]. The Riemann-Liouville integrals JZ, f
and Ji* f of order o > 0 with a > 0 are defined by

J flx) = 1“(1a) /x (x—t)* L ft)dt, x=>a
and ' ,
J& f(z) = F(a)/ (t—2)* L ft)dt, x<b

respectively. Here, I'(at) is the Gamma function and J, f(x) = JO_f(z) =
().
It is remarkable that Sarikaya et al.[25] first give the following interest-

ing integral inequalities of Hermite-Hadamard type involving Riemann-
Liouville fractional integrals.

Theorem 1.2. Let f : [a,b] — R be a positive function with 0 < a < b
and f € Ly [a,b]. If f is a convex function on [a,b], then the following
inequalities for fractional integrals hold:

fla)+ f(b)
2

/ ( - b) < TOFD) e oy 1 e fa)] < (@)

2 2(b—a)

with o > 0.

Sarikaya and Yildirim also give the following Hermite-Hadamard type
inequality for the Riemann-Lioville fractional integrals in [22].
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Theorem 1.3. Let f : [a,b] — R be a positive function with a < b
and f € Li[a,b]. If f is a convex function on [a,b], then the following
inequalities for fractional integrals hold:

a+b\ 27 T(a+1) [ , o
F(557) < F e gm0+ s £(0)] <

For the more information fractional calculus and related inequalities
please refer to (5], [10], [11], [16], [17], [24], [26], [29]. [30], [33)).

2. Generalized Midpoint and Trapezoid Type Inequali-

ties

In this section, we will first present a lemma for twice differentiable
functions to obtain trapezoid and midpoint inequalities. By using this
lemma, we establish some inequalities which generalize the midpoint and
trapezoid inequalities involving Riemann-Liouville fractional integrals
obtained in previous works.

Lemma 2.1. Let I C R be an open interval, a,b € I with a < b. If
f I — R is a twice differentiable mapping such that f” is integrable
and 0 < A <1, a>1, then we have

(o203 (2522) o

Lla+2) (. e
e COMR RS ARB)]
(b~ ay

1
. /Ok:(t)f (ta+ (1—t)b)dt

where
t(t*—N) 0<t<

N[ =

k(t) =
1-t)((1-1*=N <t
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Proof. It suffices to note that

I :‘/%@UWW+O—QMﬁ 5)
0

/it(t"‘—)\)f”(ta+(1—t)b)dt
0

+[(1—t)((1—t)°‘—/\)f”(ta+(1—t)b)dt

2

= L+
Integrating by parts twice, we can state:
1
L - /%w&mﬁmm+a—ﬂmm (6)
0
1
(t 1 —t)b)|? Tt 1 —t)b
PV / J'ltas ) (a4 1) — Ny dt

: <><> ()
_(b_)\a)gf(b) alat]) / f(ta+ (1 —1t)b)t*tat

ala+1) 1
(b — a)2 (b — Cl)a

and similarly, we get

r (a) JFaTH)Jrf (b)

Bo= [ a-0(-0" =N ot 0 ™)
Flta+ (1 —t)b)|*

= a-pa-nr-n s

1
2

L (m:flb— t)b) (a+1)(1—1)% =)

- ) ()

_(b_la)z (C“Q“ _ A) f (‘2”)> + (‘;E“Jaﬁﬂm Ty (@),

+

— e
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Using (6) and (7) in (5), it follows that
I han - <a+1 ) (a—;—b)_(bi)\a)Q <f(a)—2|—f(b))
SO0 (T S )+ Ty S @)
e s

I(a+2) N .
g (e O+ Ty 1@

Then by multipling the above equality with (b- )
proof. O

Theorem 2.2. Let I C R be an open intervial, a,b € I with a < b and
f: I — R be a twice differentiable mapping such that f” is integrable

and 0 <A< 1, a>1. If|f"] is a convex on [a,b], then the following
inequalities hold:

_o+l at+b\ | (fla)+f(b)
‘(/\ 90 >f< 5 ) )\< : ) .
ot (st T O ey @)
1 Aaate) )
(b—a)? <2a+2(a+2)—8+a+2>[f()l+|f o), 0<r<]
<8_W>[‘f/l(a)|+|f"(b)|}, Laagi
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) o)
* W (g O+ Ty 1 @)

N

(O (ta + (1 =) b)| dt

= {/ [t (t* = N)||f" (ta+ (1 —t)b)|dt

1
+A (L=t (=8 = N[ (ta+ (1 —t)b)Idt}

_ (b-a)?
= B {Jlﬁ-Jé}.

We assume that 0 < A < 3, then using the convexity of ||, we get

i

N

/ (™ — NS (@) + (- £) 1" ()] dt (10)

/0 EO = ) L (a)] + (1= ) [ (b)) dt

o
Ao

L =N [l @)+ (L=t [f7 (b)]] dt

[

201t a 1 A
= 17" (@) T W
3(a+3) 223 (a+3) 24
alta  2aAltd a+4 A
+ 11" (0)] - + 5ot -
a+2  3(a+3) 223 (a+2)(a+3) 12

and similarly, we have

1-Aa
Jr < 1 A=) (A=) =N [t (@) + @ =) [ @) dt (11)

2

+[ A= 0- -0 @]+ A0l @)
1-Xo



ON GENERALIZATION OF MIDPOINT ... 123

(@) aAtE 2001t N a+4 A
a _ A
a+2  3(a+3) 223 (a+2)(a+3) 12
20\t 1 A
1" b — .
+[f7 ()] 3(a+3)+2"+3(a+3) 24]

Using (10) and (11) in (9), we see that the first inequality of (8) holds.
On the other hand, let % < A < 1, then, using the convexity of |f”| and
by simple computation we have

1

5 < /0 L = Nt £ (@)] + (L= 1) |7 )] at (12)

_ /Qt()\—t“) [t (a)] + (1 — ) | (b)]] dt

0

_ i 1 " i_ atd "
B <24 2043 a+3>‘f )‘+<12 2a+3(a—l—2)a+3>‘f )

and similarly

1
Ty < L\(1—?5)((1—t)a—)\)Ilf"(taJr(l—t)b)ldt (13)

= /l(l—t)(A—(1—t)°‘)[tlf”(a)l+(1—t)|f”(b)|]dt
A a+4 " A 1 .
- (12—2&+3(a+2>(a+3))|f ()+(24 W)u (b)] .

Thus if we write (12) and (13) in (9), we obtain the second inequality
of (8). This completes the proof. [

Corollary 2.3. Under the assumptions of Theorem 2.2 with A\ = 0, then
we get the following inequality

20717 (a + 1)
(b—a)® <

(b—a)* {If” (@) + 11" (b)l]

gy O+ ey 1 @) =1 (557

@+ (at2) 8
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which is proved by Noor and Awan in [16, Theorem 2 (for s=1)].

Remark 2.4. If we take o = 1 in Corollary 2.3, then we get the following
mequality

bf/bm)dt_f (=)< (- 0)? R

24 2

which is given by Sarikaya et al. in [27].

Corollary 2.5. Under the assumptions of Theorem 2.2 with A =
then we get the following inequality

2047

‘f (a) +f(b) 20‘(21“_(2‘; 1) <JF@2+1))+f (b) + J(O‘%b)_f (a)> ‘

(b— a)2 2 (a41)(a+2) ) "
W(a(a—l—l)lﬂy—l—l—Q) [ (@)|+ | £ ()]

for a >3 and

'f(a) 1) 2“‘(?};‘; D <J?a2+b)+ PO+ Ty (a))’

b—a)? « a . ,
8(a(+1)(2x+2)<( H)g( u )Hf (@) + | £ ()]

for 1 < a<3.

Remark 2.6. If we take o = 1 in Corollary 2.5, then we get the following
inequality

f(a) + ) Lf" (@) + [f" (0)]
2 —a/f 2

which is given by Sarikaya and Aktan in [23].
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Remark 2.7. Under the assumptions of Theorem 2.2 with A = % and
a =1, then we get the following inequality

s @rar(50) 1] - a/f

< b= a)’ [If” @) +[f” (b)!]
81

2

which is given by Sarikaya and Aktan in [23].

Remark 2.8. Under the assumptions of Theorem 2.2 with A = % and
a =1, then we get the following inequality

ot [ [0 (1)

(b—a)’ {f” (@) + /" (b)\]
48 2

X

which is given by Sarikaya and Aktan in [25].

Theorem 2.9. Let I C R be an open intervial, a,b € I with a < b and
f: I — R be a twice differentiable mapping such that f” is integrable
and 0 < A < 1, a > 1. If |f"|? is a convex on [a,b], g = 1 then the

following inequalities hold:

() ()
ot (T T O+ Ty S “”)‘

_ (b0’ aXta 1 A
= 2 a+2+2a+2(a+2)_§
<A [Cu " @]+ Co |1 )7+ [Ca | £ (@) + x| ()] )7}

and

N[ =

for 0 < A <
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e R
s (e O+ T T @)

x { [Calf" @+ Cal7” B + [Cals” @ + Ca 5" B)7) } :

1 1,1 _
forgé)\élwher65+a—l,

o _ 20t 1 A

7 \3(a+3) 208 (a+3) 24

o = a/\1+%_2a/\1+%+ a+4 A
> 7 \la+2 3(@+3) 223 (a+2)(a+3) 12

A 1

G = (24_2a+3(a+3))

c. — i_ a+4

YT \12 0 208 (a4 2)(a+3))

Proof. Suppose that ¢ > 1. From Lemma 2.1 and using the well known
power mean inequality, we have

() ()

26—t (e O+ Ty T @)

—a)? !
(b 5 ) /0 k()] |f” (ta+ (1 —1t)b)|dt

+

N

Co? [
oo {/0 E(E = )| |1 (ta+ (1 — ) )| de

N

1
+[ (L=t) (A=) = N)]]f” (ta+(1—t)b)\dt}
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- (b;a){</2|t(ta—)\)|dt> (/ (= M) |f” (ta+ (1 — 1) )|th)q
(/|1—t (1—b)° —A)dt)

Q=

1
x <[ (A=) (A=) = NI (ta+ (1 -1) b)lth>

Let 0 < A < 3. Then since |f'|? is convex on [a,b] ,we Llow that for
te[0,1]

|f (ta+ (1 =) 0)|" <t[f (@) + (X —0)|f (&)

hence, by simple computation
/ [t (t* = N)||f" (ta+ (1 —t)b)|? dt (17)
< / EO— 1) [t (@) + (1= ) £ (0)]7] dt
0

+ [ =N R @l + - 01 6 de
Ao

20\ 1+a 1 A
= I (@) | o+ - =
3(a+3) 22t3(a+3) 24
AHE 2aNlta 4 A
@ A 2y i _ 4|,
a+2  3(a+3) 223 (a+2)(a+3) 12

ﬁ (L= 1) (1= 5% = M| |f” (ta+ (1 — t)b)|"dt (18)

N

1-Ao
[ a0 =0T =N el @ + 0 =] @) i
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+/ L= A=A =) [t @]+ Q=) [f(b)|"] at
1-)\a

@) aAlte 2aAte . a+4 A
B a+2 3(a+3) 2083 (a+2)(a+3) 12
20\t a 1 A
" b q _
O e T e ey 24]’
%
/|t(to‘—)\)|dt (19)
0
A® L
:/ t()\—t“)dtJr/lt(to‘—)\)dt
0 o
B aA1+%+ 1 A
C a+2  20f2(a+42) 8
and
1
JACERICETAEPE (20)
2

1

1-A®
:/1 (1—t)((1—t)°‘—)\)dt+/ (- (1))

1 1-A@

arlta . 1 A
a+2 2002 (a+2) 8

Substituting the equalities (17)-(20) in (16), the we obtain the inequality
(14). One can prove the inequality (15) similar to (14). It is omitted. O

Remark 2.10. Under the assumptions Theorem 2.9 with o = 1, then
Theorem 2.9 reduces to Theorem 4 in [25].

Remark 2.11. Under the assumptions of Theorem 2.9 with \ = % and
a =1, then we get the following inequality
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Hf<a>+4f(“;b)+f<b>} —bfa/bf(t)dt

5 {(59 Sl I <b>|q)é + (13%”" (a)|? + 59" (b)lq>;]

= 162 26 % 3 26 % 3

which is given by Sarikaya and Aktan in [23].

Corollary 2.12. Under the assumptions Theorem 2.9 with A = 0, then
we get the following inequality

e (T T+ Ty 1) -1 (50 o

2
(b—a)?20-1 1 -3
a+1 20+2 (a4 2)

" q 1 " q at+4
X [\f (a)] mﬂf ®)] 20‘+3(04+2)(04+3)]

" q a+4 " q 1 1
* {‘f O 5 arn@ey T O 2‘”3(a+3)]

Qe

Q|
——
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