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1 Introduction

In 1976, the notion of coincidence and common fixed point of commuting mappings are introduced
by G. Jungck [?]. Several authors have contributed to the development of the existence and
uniqueness of coincidence points of operators in different spaces [?, ?, ?, ?, ?]. Khojaste et. al
[?], introduced simulation function and new contraction depending simulation function. Recently,
Roldan et. al [?], modified this concept and proved the existence and uniqueness of coincidence
points of two operators in the setting of complete metric spaces.

On the other hand, in 1992, G. Mathews [?] introduced the notion of the partial metric which
is a generalization of the metric and it can be applied to study of denotational semantics of data
for network. In [?], A. Nastasi et. al proved the existence and uniqueness of fixed points by using
R-functions and lower semi-continuous functions in the setting of metric spaces and partial metric
spaces.

In this paper, inspired by [?, ?, ?] we deduce some coincidence point results in the setting of
ordered partial metric spaces by using R-functions. An example is given to support the result.
Section 4 is devoted to an application to integral equations.

2 Preliminaries

We start by recalling some definitions and properties of partial metric spaces which will be needed
during the paper.

Definition 2.1 [?], A partial metric on a nonempty set X is a function p : X ×X → R such that
for all x, y, z ∈ X;
(i) p(x, x) = p(x, y) = p(y, y)⇔ x = y.
(ii) p(x, x) ≤ p(x, y).
(iii) p(x, y) = p(y, x).
(iv) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).
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2 On the Coincidence Point in Ordered Partial Metric Spaces

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on
X. Clearly, a metric p on a set X is a partial metric such that p(x, x) = 0 for all x ∈ X.

Each partial metric p on X generates a T0−topology τp on X which has as a base, the family of

open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where

Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}

for all x ∈ X and ε > 0.
The following properties will be obtained from the topology τp on the partial metric space (X, p).

(i) (X, τp) is first countable.

(ii) A sequence {xn}n∈N in a partial metric space (X, p) converges to a point x ∈ X if and only if
p(x, x) = limn→∞ p(x, xn). A sequence {xn}n∈N in a partial metric space (X, p) is called a Cauchy
sequence if there exists limn,m→∞ p(xn, xm).

(iii) A partial metric space (X, p) is said to be complete if every Cauchy sequence {xn}n∈N in X
converges, with respect to τp, to a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).
Every partial metric p on X, induces a metric ps : X × X −→ R+ defined by ps(x, y) =
2p(x, y)− p(x, x)− p(y, y) for all x, y ∈ X, such that τ(p) is finer than τ(ps) [?].

To see some examples of partial metric spaces refer to [?, ?].

Lemma 2.2 [?] A partial metric space (X, p) is complete if and only if the metric space (X, ps)
is complete. Furthermore, limn−→∞ ps(a, xn) = 0 if and only if p(a, a) = limn−→∞ p(a, xn) =
limn,m−→∞ p(xn, xm).

Lemma 2.3 [?] Let (X, p) be a partial metric space. Then the following hold:
(i) If p(x, y) = 0, then x = y.
(ii) If x 6= y, then p(x, y) > 0 and p(y, x) > 0.

Lemma 2.4 [?] Let (X, p) be a partial metric space and let λ : X −→ [0,∞) be defined by
λ(x) = p(x, x) for all x ∈ X. Then the function λ is continuous in the metric space (X, ps).

Recently, fixed point theory has developed in metric spaces and partial metric spaces endowed with
a partial ordering [?, ?].

Definition 2.5 Let X be a nonempty set. Then (X,�, p) is called an ordered partial metric space
if (X,�) is a partially ordered set, and (X, p) is a partial metric space.

Two elements x and y of X are called comparable if x � y or y � x holds.

Definition 2.6 [?] Two self mappings f and g on a set X have a coincidence point, say x, if
y = f(x) = g(x) and y is called a point of coincidence of f and g. Also f and g are said to be
weakly compatible if f(g(x)) = g(f(x)) whenever f(x) = g(x)

Lemma 2.7 [?] Let X be a nonempty set and the mappings f, g : X −→ X have a unique point
of coincidence y in X. If f and g are weakly compatible, then f and g have a unique common fixed
point.

Definition 2.8 [?] Let (X,�) be a partially ordered set and f, g : X −→ X. Then f is said to be
g-nondecreasing if for x, y ∈ X,

g(x) � g(y) =⇒ f(x) � f(y).
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3 Main Results

We begin this section by giving the concept of R-function ( see [?]).

Definition 3.1 A function ϕ : [0,∞)× [0,∞) −→ R is called R−function if the following condi-
tions hold:
(i) for each sequence {an}n∈N ⊆ (0,∞) with ϕ(an+1, an) > 0, for all n ∈ N, then limn−→∞ an = 0;
(ii) for every two sequences {an}n∈N, {bn}n∈N in (0,∞) converging to the same limit L ≥ 0, then
L = 0 whenever L < an and ϕ(an, bn) > 0 for all n ∈ N.

In the sequel (X,�, p) is an ordered partial metric space where (X,�) is a partially ordered
set and (X, p) is a partial metric space.

In the main result, we suppose that the following property holds.

Property (C). If {xn}n∈N ⊆ X is a nondecreasing (noncreasing) sequence with xn −→ x in
X, then xn � x (x � xn) for all n ∈ N. Also, assume that f and g are two self mappings on X
such that f, g are comparable at some x0 ∈ X and f is g-nondecreasing, f(X) ⊆ g(X) and one of
the sets f(X) or g(X) is closed.

Theorem 3.2 Let f, g be two self mappings on an ordered complete partial metric space (X,�, p)
and the Property (C) be fulfilled. Suppose that f satisfying

ϕ(p(f(x), f(y)), p(g(x), g(y))) > 0, (1)

for all comparable g(x), g(y) with g(x) 6= g(y), x, y ∈ X and some R-function ϕ. Also assume that
for any two sequences {an}n∈N, {bn}n∈N in (0,∞) such that limn−→∞ bn = 0 and ϕ(an, bn) > 0
for all n ∈ N, then limn−→∞ an = 0. Then f and g have a coincidence point x ∈ X such that
p(g(x), g(x)) = 0. Moreover, if all the points of coincidence of f and g are comparable and f, g are
weakly compatible, then f and g have a unique common fixed point.

Proof: By Property (C), g(x0) � f(x0) or f(x0) � g(x0). Without lose of generality, suppose
g(x0) � f(x0) and choose {xn}n∈N in X such that f(xn) = g(xn+1) and

g(x0) � f(x0) = g(x1) � f(x1) = g(x2) � · · · � f(xn) � g(xn+1),

for all n ∈ N ∪ {0}. If {xn}n∈N contains a coincidence point xj , j ∈ N ∪ {0}, of f and g, then
g(xj+1) = f(xj) = g(xj). So an = p(g(xj), g(xj)) = 0. If not, then by cotractive condition

ϕ(p(f(xj), f(xj)), p(g(xj), g(xj))) > 0

with an = p(g(xj), g(xj)) = 0, n ∈ N, Definition ??(i) and f(xj) = g(xj), we have limn−→∞ an = 0
and then p(g(xj), g(xj)) = 0.

Now, assume that {xn}n∈N does not contain any coincidence point of f and g, that is g(xn) 6=
f(xn) = g(xn+1) for all n ≥ 0. Then an = p(g(xn), g(xn+1)) > 0 for all n ≥ 0 and so by contraction
condition, for all n ≥ 0

ϕ(an+1, an) = ϕ(p(g(xn+1), g(xn+2)), p(g(xn), g(xn+1)))

= ϕ(p(f(xn), f(xn+1)), p(g(xn), g(xn+1)))

> 0.

Therefore limn−→∞ an = limn−→∞ p(g(xn), g(xn+1)) = 0. But limn−→∞ p(g(xn+1), g(xn+1)) = 0
and then

lim
n−→∞

ps(g(xn), g(xn+1)) = 0.
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Claim. The sequence {g(xn)}n∈N is a Cauchy sequence. Suppose not, then there exists subse-
quences {g(xm(k))}k∈N, {g(xn(k))}k∈N of {g(xn)}n∈N such that k ≤ n(k) < m(k) and

ps(g(xn(k)), g(xm(k)−1) ≤ ε0 ≤ ps(g(xn(k)), g(xm(k))

for all k ∈ N. But limn−→∞ ps(g(xn+1), g(xn)) = 0, then

lim
k−→∞

ps(g(xn(k)), g(xm(k))) = lim
n−→∞

ps(g(xn(k)−1), g(xm(k)−1)) = ε0.

Suppose that p(g(xn(k)−1), g(xm(k)−1)) > 0 for all k ∈ N. By the contraction condition (??), for
sequences {ak}k∈N = {p(g(xn(k)), g(xm(k)))}k∈N and {bk}k∈N = {p(g(xn(k)−1), g(xm(k)−1))}k∈N,
we have

ϕ(ak, bk) = ϕ(p(g(xn(k)−1), g(xm(k))), p(g(xn(k)−1), g(xm(k)−1))) > 0

for all k ∈ N. But for all k ∈ N,

ε0 < p(g(xn(k)), g(xm(k))) = ak

then by Definition ??(ii),

lim
n−→∞

an = lim
n−→∞

bn = 0

and so ε0 = 0, which is a cotracdiction. Therefore {g(xn)}n∈N is a Cauchy sequence in complete
metric space (X, ps). By closedness of f(X) or g(X), there exists x ∈ X such that

lim
n−→∞

ps(g(xn), g(x)) = 0.

Using Lemma ?? and Lemma ??, then

0 ≤ p(g(x), g(x)) ≤ lim inf
n−→∞

p(g(xn), g(xn)) ≤ lim
n−→∞

p(g(xn), g(xn)) = 0.

Therefore p(g(x), g(x)) = 0 and this implies that

lim
n−→∞

p(g(x), g(xn)) = 0.

At last, we show that x is a coincidence point of f and g.
If {g(xn)}n∈N has a subsequence {g(xn(k))}k∈N such that g(xn(k)) = f(x) for all k ∈ N. Then

by uniquness of the limit in (X, ps), we have f(x) = g(x). Otherwise, if there exists subsequence
{g(xn(k))}k∈N of {g(xn)}n∈N such that g(xn(k)) = g(x) for all k ∈ N and g(xn(k0) + 1) = g(xn(k0))
for some k0 ∈ N, then f(xn(k0)) = g(xn(k0)).

If for all k ∈ N, g(xn(k)+1) 6= g(xn(k)), then we can consider the sequence {g(xn)}n∈N \
{g(x)}n∈N insted of {g(xn)}n∈N. Assume g(xn) 6= g(x) and g(xn) 6= f(x) for all n ∈ N. Put
an = p(g(xn), g(x)) and bn = p(f(xn), f(x)) for all n ∈ N. Clearly {an}n∈N, {bn}n∈N ⊆ (0,∞) and

lim
n−→∞

an = lim
n−→∞

p(g(xn), g(x)) = 0.

By using Property (C), we have g(xn) � g(x) for all n ∈ N and by contraction condition

ϕ(bn, an) = ϕ(p(f(xn), f(x)), p(g(xn), g(x))) > 0.

Then by Definition ??(ii), limn−→∞ bn = p(f(xn), f(x)) = 0. Therefore by partial metric property
we have

lim
n−→∞

ps(f(xn), f(x)) = 0.



S. Jahedi and R. Gharibi 5

But f(xn) = g(xn+1) for all n ∈ N ∪ {0}, then limn−→∞ ps(g(xn), f(x)) = 0 and by uniqueness of
the limit in the metric space (X, ps), we have f(x) = g(x).

Now assume all the points of coincidence of f and g are comparable and f and g are weakly
compatible. Then for y ∈ X with f(y) = g(y) we have g(y) = g(x). If not, then for all n ∈ N and
an = p(g(y), g(x)) > 0 and

ϕ(an+1, an) = ϕ(p(f(y), f(x)), p(g(y), g(x))) > 0.

Thus limn−→∞ an = 0 and g(y) = g(x).

Finally, Lemma ?? implies that f and g have a unique common fixed point. �

Following example illustrates Theorem ??.

Example 3.3 Let X = R+ with natural ordering ′′ ≤′′ and define the partial metric p on X by
p(x, y) = max{x, y} for all x, y ∈ X. So (X,≤, p) is an ordere partial metric space. Consider
the R-function ϕ : [0,∞) × [0,∞) −→ R defined by ϕ(t, s) = s − 2t for all t, s ∈ R. Clearly
ϕ(t, s) ≤ s− t. Define two mappings f, g : X −→ X by

f(x) =

{
x, 0 ≤ x ≤ 1√
x, x > 1.

, g(x) = 3x.

Obviously, f, g are comparable on R+, mapping f is g-nondecreasing, f(X) ⊆ g(X) and f(X)
is closed. For all x 6= y in X, (except x = 0 or y = 0 ) g(x) and g(y) are comparable and
the contraction condition ϕ(p(f(x), f(y)), p(g(x), g(y))) > 0 holds. In fact, for 0 ≤ x ≤ 1 with
x ≥ y we have ϕ(x, 3x) = x > 0 and for x > 1, we have ϕ(

√
x, 3x) = 3x −

√
x > 0. So all the

conditions of Theorem ?? hold and f, g have a unique coincidence point. In fact, f(0) = g(0) = 0
and p(f(0), g(0)) = 0.

The fact that, for any R-function ϕ which satisfies the relation

ϕ(t, s) ≤ s− t

for any t, s ∈ [0,∞) Theorem ?? holds, assures that Theorem ?? is an extension of Geraghty’s
fixed point theorem [?] to the coincidence point in the setting of ordered partial metric spaces.

Corollary 3.4 Let f, g be two self mappings on an ordered complete partial metric space (X,�, p)
and Prpperty (C) be fulfiled. Suppose that

p(f(x), f(y)) ≤ ψ(p(g(x), g(y))) · p(g(x), g(y)),

for all comparable g(x), g(y) with g(x) 6= g(y), x, y ∈ X and ψ : [0,∞) −→ [0, 1) is a function with
the property that limn−→∞ αn = 0, {αn}n∈N ⊆ [0,∞) whenever limn−→∞ ψ(αn) = 1. Then f and
g have a coincidence point x ∈ X such that p(g(x), g(x)) = 0.

Proof : Define ϕ : [0,∞)× [0,∞) −→ R by

ϕ(t, s) = ψ(s)s− t (t, s ∈ R).

Clearly ϕ(t, s) ≤ s−t for all t, s ∈ [0,∞) and ϕ is a R-function. The desired result can be concluded
by Theorem ??. �

The following corollary is also valid whenever we define the function ϕ by ϕ(t, s) = ψ(s)s− t.
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Corollary 3.5 Let f, g be two self mappings on an ordered complete partial metric space (X,�, p)
and Prpperty (C) be fulfiled. Suppose that

p(f(x), f(y)) ≤ ψ(p(g(x), g(y))) · p(g(x), g(y)),

for all comparable g(x), g(y) with g(x) 6= g(y), x, y ∈ X and ψ : [0,∞) −→ [0, 1) is a function that
lim supt−→r+ ψ(t) < 1 for all r ∈ (0,∞). Then f and g have a coincidence point x ∈ X such that
p(g(x), g(x)) = 0.

By considering the function ψ : [0,∞) −→ [0, 1) which is a right continuous function and ψ(t) > 0
for all t ∈ (0,∞), Corollary ?? again is valid.

4 An application

In this section, by using Theorem ??, we prove the existence and unique solution of the system of
integral equations

u(x) =

∫ b

a

λ1k1(x, t)F1(t, u(t))dt (2)

v(x) =

∫ b

a

λ2k2(x, t)F2(t, v(t))dt

in the space of real continous functions X = C(I), I = [a, b], where x ∈ I; λi ∈ R; ki : I × I −→ R,
Fi : I × R −→ R, i = 1, 2 and for u ∈ C(I), ‖u‖ = supt∈I |u(t)|. Endow X = C(I) with the
following order

u1 � u2 ⇐⇒ u1(t) ≤ u2(t) (t ∈ I).

The space (X, p) with p(u1, u2) = 1
2 (‖u1 − u2‖+ ‖u1‖+ ‖u2‖) is a partial metric space. Consider

the following assumptions on the system (??):

(1) For all u ∈ X, there exists v ∈ X such that for all x ∈ I∫ b

a

λ1k1(x, t)F1(t, u(t))dt =

∫ b

a

λ2k2(x, t)F2(t, v(t))dt

(2) For all u1, u2 ∈ X, if∫ b

a

λ2k2(x, t)F2(t, u1(t))dt ≤
∫ b

a

λ2k2(x, t)F2(t, u2(t))dt,

then ∫ b

a

λ1k1(x, t)F1(t, u1(t))dt ≤
∫ b

a

λ1k1(x, t)F1(t, u2(t))dt.

(3) There exists α ∈ (0, 1) such that |λ1| ≤ α|λ1|.
(4) For all u1, u2 ∈ X

(i) |
∫ b

a

k1(x, t)[F1(t, u1(t))− F1(t, u2(t))]dt| ≤ |
∫ b

a

k2(x, t)[F2(t, u1(t))− F2(t, u2(t))]dt|

(ii) |
∫ b

a

k1(x, t)F1(t, ui(t))dt| ≤ |
∫ b

a

k2(x, t)F2(t, ui(t))dt| (i = 1, 2)

for all comparable
∫ b

a
k2(x, t)F2(t, u1(t))dt 6=

∫ b

a
k2(x, t)F2(t, u2(t))dt.
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(5) If ∫ b

a

λ1k1(x, t)F1(t, u(t))dt =

∫ b

a

λ2k2(x, t)F2(t, u(t))dt,

then ∫ b

a

λ1 k1(x, t)F1

(
t,

∫ b

a

λ2k2(t, z)F2(z, u(z))dz)

)
dt

=

∫ b

a

λ2k2(x, t)F2

(
t,

∫ b

a

λ1k1(t, z)F1(z, u(z))dz

)
dt.

By using the above assumptions, we show that Theorem ?? assures that the system (??) has a
unique solution when ϕ : [0,∞) × [0,∞) −→ R defined by ϕ(t, s) = αs − t is a R-function for
t, s ∈ [0,∞) and α ∈ (0, 1).

Define two self mappings f and g by

(f(u))(x) =

∫ b

a

λ1k1(x, t)F1(t, u(t))dt

(g(u))(x) =

∫ b

a

λ2k2(x, t)F2(t, u(t))dt.

Let w ∈ f(X) then w(x) = (f(u))(x) =
∫ b

a
λ1k1(x, t)F1(t, u(t))dt. By (1), there exists v ∈ X such

that for all x ∈ I∫ b

a

λ1k1(x, t)F1(t, u(t))dt =

∫ b

a

λ2k2(x, t)F2(t, v(t))dt = (g(v))(x).

So w = g and f(X) ⊆ g(X).
On the other hand if g(u) � g(v), for u, v ∈ X, then on (C(I),�, p) we have∫ b

a

λ2k2(x, t)F2(t, u(t))dt =

∫ b

a

λ2k2(x, t)F2(t, v(t))dt

for all x ∈ I. By (2), (f(u))(x) ≤ (f(v))(x) for all x ∈ I and f(u) � f(v), i.e. f is g-nondecreasing.
Note that for any x ∈ I and u, v ∈ X,

|
∫ b

a
λ1k1(x, t)[F1(t, u(t))− F1(t, v(t))]dt|+ |

∫ b

a

λ1k1(x, t)F1(t, u(t))dt|

+ |
∫ b

a

λ1k1(x, t)F1(t, v(t))dt|

≤ α|λ2|(|
∫ b

a

k1(x, t)[F1(t, u(t))− F1(t, v(t))]dt|+ |
∫ b

a

k1(x, t)F1(t, u(t))dt|

+ |
∫ b

a

k1(x, t)F1(t, v(t))dt|)

≤ α |
∫ b

a

λ2k2(x, t)[F2(t, u(t))− F2(t, v(t))]dt|+ α |
∫ b

a

λ2k2(x, t)F2(t, u(t))dt|

+ α |
∫ b

a

λ2k2(x, t)F2(t, v(t))dt|

≤ α (‖g(u)− g(v)‖+ ‖g(u)‖+ ‖g(v)) .
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So the contraction condition (??) holds, i.e.,

‖f(u)− f(v)‖+ ‖f(u)‖+ ‖f(v)‖ ≤ α (‖f(u)− f(v)‖+ ‖f(u)‖+ ‖f(v)) .

Therefore all assumptions of Theorem ?? are fulfilled and so f, g have coincidence point. Suppose
that f(u) = g(u) or equivalently∫ b

a

λ1k1(x, t)F1(t, u(t))dt =

∫ b

a

λ2k2(x, t)F2(t, u(t))dt.

Then by condition (5), ∫ b

a

λ1k1(x, t)F1

(
t,

∫ b

a

λ2k2(t, z)F2(z, u(z))dz)

)
dt

=

∫ b

a

λ2k2(x, t)F2

(
t,

∫ b

a

λ1k1(t, z)F1(z, u(z))dz

)
dt.

This implies that f and g are weakly compatible and they have unique fixed point. In others words
the system (??) has a unique solution.
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