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1. Introduction

We say that a functional equation Q is stable if any function g satisfying
the equation Q approximately is near to true solution of Q.

In 1940, S. M. Ulam [8], while he was giving a talk before the math-
ematics club of the University of Wisconsin, he proposed a number of
importent unsolved problems. One of the peoblems is the stability of
functional equations. In the last five decades the problem was tackled
by numerous authors [3, 6]
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It,s solutions via various forms of functional equations like additive,
quadratic, Cubic and quartic and its mixed forms were discussed.

Ulam,s stability problem states as follows:

Let G be a group and let H be a metric group with metric d(., .). Given
ε > 0 dose exists a δ > 0 such that if a function f : G −→ H satisfies
the inequality d(f(xy), f(x)f(y)) < δ for all x, y ∈ G, then there exists
a homomorphism A : G −→ H with d(f(x), A(x)) < ε for all x ∈ G?
In 1941, Hyers [6] gave a first affirmative answer to the question of Ulam
for Banach spaces as follows:

Theorem 1.1. [4](Hyers) Let E,E

be Banach spaces and let f : E −→

E

be a mapping satisfying:

f(x+ y)− f(x)− f(y)  ε (1)

for some ε > 0 and all x, y ∈ E. Then the limit A(x) = limn→∞
f(2nx)
2n

exists for all x ∈ E and A : E −→ E

is the unique additive mapping

satisfying:

f(x)−A(x)  ε (2)

for all x ∈ E. Moreover, If f(tx) is continuous in t for each fixed x ∈ E,
then A is linear.

Proof. See[4]. 
In 1983 , Skof proved the Hyers-Ulam-Rassias stability problem for
quadratic of the following functional equation:

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (3)

for a class of functions f : A −→ B where A is a normed space and B is
a Banach space ([1, 7] ).

In 1994, a generalization of the Rassias,s theorem was obtained by
Gavruta [5] by replacing the unbounded Cauchy difference by a general
control function in the spirit of Rassias approach .

In 2003, Cadariu and Radu applied the fixed point method to the in-
vestigation of the Jensen functional equation [3]. They could persent a
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short and simple proof(different of the direct method, initiated by Hyers
in 1941 ) for the generalized Hyers-Ulam stability of Jensen functional
equation [3], for Cauchy functional equation [2].

In this paper, using direct method we investegat the Hyers-Ulam-Rassias
stability of the following equations:

a)f(x+ 2y)− f(x− 2y) = 2

f(x+ y)− f(x− y)


+ 2f(3y)− 6f(2y) + 6f(y),

b)f(3x+ y) + f(3x− y) = 3

f(x+ y) + f(x− y)


+ 48f(x).

Definition 1.2. The additive Cauchy equation f(x+y) = f(x)+f(y) is
said to have the Hyers-Ulam stability on (E,E


) if for everyf : E → E



satisfying the inequality (1) for some ε  0 and for all x, y ∈ E, there
exists an additive function A : E → E


such that f −A is bounded on E

[4].

An ordered set (M,) is called a lattice if any two elements x, y ∈ M
have a least upper bound denoted by x ∨ y = sup{x, y} and a greatest
lower bound denoted by x ∧ y = inf{x, y}.
Similarly, we denoted the supremum and the infimum for arbitrary sub-
sets. if v is the least upper bound of a subset A ⊂ M, then we will
write

v = sup(A) =


x∈A
x = sup{x : x ∈ A}.

If u is the greatest lower bound of A, then we will write

u = inf(A) =


x∈A
x = inf{x : x ∈ A}.

Of course, if sup(A) exists, then A is bounded from above. To using the
lattice notation, let x, y ∈ R ( R is a Banach lattice ) then we have :

x+ y = x ∨ y + x ∧ y, (4)

and

x− y = x ∨ (−y) + x ∧ (−y). (5)
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and using Relation (4) and (5) we obtain that:

x =
1
2


x ∨ y + x ∧ y + x ∨ (−y) + x ∧ (−y)


, (6)

and

y =
1
2


x ∨ y + x ∧ y + (−x) ∨ y + (−x) ∧ y


. (7)

2. Main Results

In this section, we deal with prove the Hyers-Ulam-Rassias stability of
the following a Mixed Type Additive, Quadratic, and Cubic functional
equation in Banach lattices.

f(x+ 2y)− f(x− 2y) = 2

f(x+ y)− f(x− y)


(8)

+2f(3y)− 6f(2y) + 6f(y),

By (4), (5), (6), (7), The above Mixed functional equation in the lattices
form is the following:

f


3
2


x ∨ y + x ∧ y


− 1

2


x ∨ (−y) + x ∧ (−y)



= 2


f

x ∨ y + x ∧ y)


− f


x ∨ (−y) + x ∧ (−y)



+ 2f


3
2


x ∨ y + x ∧ y + y ∨ (−x) + y ∧ (−x)



− 6f


x ∨ y + x ∧ y + y ∨ (−x) + y ∧ (−x)



+ 6f


1
2


x ∨ y + x ∧ y + y ∨ (−x) + y ∧ (−x)



Let X and Y be two Banach lattices and, f : X −→ Y define the
difference operator Df : X ×X −→ Y by
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Df (x, y) = f(x+ 2y)− f(x− 2y)− 2

f(x+ y)− f(x− y)



−2f(3y) + 6f(2y)− 6f(y),

for all x, y ∈ X. We consider the following functional inequality
Df (x, y)

  φ

x, y


,

for an upper bound φ : X ×X −→ [0,∞) .

Theorem 2.1. Let X and Y be two Banach lattices and s ∈ {−1, 1}be
fixed. Suppose that an even mapping f : X −→ Y satisfies f(0) = 0 and

Df (x, y)
  φ


x, y


, (9)

for all x, y ∈ X. If the upper bound φ : X ×X −→ [0,∞) , is a mapping
such that

∞

i=0

4si

φ(2−six, 2−six) +

1
2
φ(0, 2−six)


<∞,

and that

lim
n−→∞

4sn(φ(2−six, 2−siy) = 0,

for all x, y ∈ X, the limit

Q(x) = lim
n−→∞

4snf(2−six),

exists for all x ∈ X, and Q : X −→ Y is a unique quadratic function
satisfying (8) and



f(x) ∨


−Q(x)


+ f(x) ∧


−Q(x)

 
1
8

∞

i=(s+1)/2

4si

φ(2−six, 2−six) +

1
2
φ(0, 2−six)


,

(10)

for all x ∈ X.
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Proof. Let s = 1. putting x = 0 in (9), we get
2

f(3y) ∨ (−3f(2y) + f(3y) ∧ (−3f(2y)


∨ (3f(y)



+ 2


f(3y) ∨ (−3f(2y) + f(3y) ∧ (−3f(2y)


∧ (3f(y)

  φ

0, y


,

for all y ∈ X. On the other hand by replacing y by x in (9), it follows
that



− f(3y)) ∨ (4f(2y) + (−f(3y)) ∧ (4f(2y))


∨ (−7f(y))



+


− f(3y) ∨ (4f(2y)) + (−f(3y)) ∧ (4f(2y))


∧ (−7f(y))

  φ

y, y


,

for all y ∈ X.
Let s = 1. By combining two equations obtained by putting x = 0 in
(9) and replacing y by x in (9) , it follows that :


2f(2y)


∨

− 8f(y)


+

2f(2y)


∧

− 8f(y)

  φ

0, y


+ 2φ


y, y


,

(11)

for all y ∈ X. With the sub stitution y := x
2 in (11) and then dividing

both sides of inequality by 2 , we get



f(x)


∨

− 4f(

x

2
)

+

f(x)


∧

− 4f(

x

2
)
 

1
2


2φ
x
2
,
x

2


+ φ


0,
x

2


.

(12)

Now, using methods similar, we can easily show that the function Q :
X −→ Y defined by

Q(x) = lim
n−→∞

4nf(2−nx)

for all x ∈ X, is unique quadratic function satisfying in (8), (10). Let
s = −1, replace 2x by x and also dividing both sides of inequality by 4,
using by (12), we have



− f(x)


∨
f(2x)

4


+

− f(x)


∧
f(2x)

4

 
1
8


2φ

x, x


+ φ


0, x


,
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for all x ∈ X. And analogously, as in the case s = −1, we can show that
the function Q : X −→ Y defined by

Q(x) = lim
n−→∞

4−nf(2nx)

is unique quadratic function satisfying in (8), (10). 

Theorem 2.2. Let X and Y be two Banach lattices. Function f : X −→
Y satisfying in the following functional equation

f(2x+ y) + f(2x− y) = 2

f(x+ y) + f(x− y)


+ 12f(x), (13)

if and only if f : X −→ Y satisfys in the functional equation

f(mx+ y) + f(mx− y) = m

f(x+ y) + f(x− y)


+ 2(m3 −m)f(x),

for any natural number m  3.

Proof. Let Function f : X −→ Y satisfys in (13). If we put x = y =
0 in (13), we have f(0) = 0, and if we put x = 0 in (13), we get
f(−y) = −f(y), also we put y = 0 in (13), and we have f(2x) =
8f(x). Furthermore, replacing y by x and y by 2x in (13), then we have
f(3x) = 27f(x) and f(2x)=8f(x).

Then for all x, y ∈ X, all k ∈ Z+, replacing y by x+ y in (13), we get

f(3x+ y) + f(x− y) = 2

f(2x+ y)− f(y)


+ 12f(x), (14)

then replacing y by y − x in (13), for x, y ∈ X, we have

f(x+ y) + f(3x− y) = 2

f(y) + f(2x− y)


+ 12f(x). (15)

Combining (14) and (15), we lead to

f(3x+ y) + f(3x− y) = 3

f(x+ y) + f(x− y)


+ 48f(x).

So by this method we get

f(mx+ y) + f(mx− y) = m

f(x+ y) + f(x− y)


+ 2(m3 −m)f(x).

The converse of theorem us automatically consistant. 
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Now, we prove the Hyers-Ulam-Rassias stability of the following Cubic
functional equation in Banach lattice .

f(3x+ y) + f(3x− y) = 3

f(x+ y) + f(x− y)


+ 48f(x),

The above Cubic functional equation in the lattices form is the following:

f


x ∨ y + x ∧ y


− 2


(−x ∨ y) + (−x ∧ y)



+ f


x ∨ (−y) + x ∧ (−y)


+ 2


x ∨ y + x ∧ y



= 3f


x ∨ y + x ∧ y


+ 3f


x ∨ (−y) + x ∧ (−y)



+ 48f


1
2


x ∨ y + x ∧ y + x ∨ (−y) + x ∧ (−y)



Theorem 2.3. Let X and Y be two Banach lattices and φ : X2 −→
[0,∞) be a function satisfying in equality:

Φ(x, y) =
∞

i=1

1
27i
φ
3ix

3
,
3iy
3


<∞

for all x, y ∈ X and also, f : X −→ Y satisfys the inequality:
f


x ∨ y + x ∧ y


− 2


(−x ∨ y) + (−x ∧ y)



+ f


x ∨ (−y) + x ∧ (−y)


+ 2


x ∨ y + x ∧ y



− 3f


x ∨ y + x ∧ y


− 3f


x ∨ (−y) + x ∧ (−y)



− 48f


1
2


x ∨ y + x ∧ y + x ∨ (−y) + x ∧ (−y)



 φ

x, y


(16)
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then there exists an unique cubic function C : X −→ Y for all x, y ∈
Xsuch that:

C(x) ∨ (−f(x)) + C(x) ∧ (−f(x))
  Φ


x, 0


. (17)

Proof. If we put y = 0 in (16), since:

x ∨ 0 = 0, x ∧ 0 = x, for x < 0

x ∨ 0 = x, x ∧ 0 = 0, for x > 0,

for all x ∈ X, then we get:
f(3x) ∨ (−27f(x)) + f(3x) ∧ (−27f(x))

  φ(x, 0),

hence:

f(3x)
27

∨ (−f(x)) + f(3x)
27

∧ (−f(x))

 
1
27
φ

x, 0


. (18)

Replacing x by 3x in (18) we get:

f(32x)
27

∨ (−f(3x)) + f(3
2x)

27
∧ (−f(3x))

 
1
27
φ

3x, 0


,

therefor

f(32x)
272

∨

− f(3x)

27


+
f(32x)
272

∧

− f(3x)

27

 
1
272
φ

3x, 0


,

so we have

f(32x)
272

∨ (−f(x)) + f(3
2x)

272
∧ (−f(x))

 
2

i=1

1
27i
φ
3ix

3
, 0

.

By induction on n, we will prove that

f(3nx)
27n

∨ (−f(3x)) + f(3
nx)

27n
∧ (−f(3x))

 
n

i=1

1
27i
φ
3ix

3
, 0


(19)
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To prove (19), let (19) holds for each k  n, then we want to prove it
for case n = k + 1 is hold. For this replacing x by 3x in (19) , then we
have

f(3k+1x)

27k
∨ (−f(3x)) + f(3

k+1x)
27k

∧ (−f(3x))

 
k

i=1

1
27i
φ

3ix, 0



The dividing both sides of the above by 27, we get


f(3k+1x)
27k+1

∨

− f(3x)

27


+
f(3k+1x)
27k+1

∧

− f(3x)

27

 
1
27

k

i=1

1
27i
φ

3ix, 0


,

therefor

f(3k+1x)
27k+1

∨ (−f(3x)) + f(3
k+1x)

27k+1
∧ (−f(3x))

 
k+1

i=1

1
27i
φ
3ix

3
, 0

.

Now we show that

f(3nx)
27n


is a Cauchy sequence. Let n > m > 0, then:


f(3nx)
27n

∨

− f(3

mx)
27m


+
f(3nx)
27n

∧

− f(3

mx)
27m

 
n

i=m+1

1
27i
φ
3ix

3
, 0

<∞.

Taking the limit as m −→∞ yields:

lim
m−→∞


f(3nx)
27n

∨

− f(3

mx)
27m


+
f(3nx)
27n

∧

− f(3

mx)
27m

 = 0.

Then

f(3nx)
27n


is a Cauchy sequence in Y for all x ∈ X, and since Y is

Banach space, hence is converge to Y Let:

C(x) := lim
n−→∞

f(3nx)
27n

.

Replacing x by 3nx and y by 3ny in (16), and Then dividing both sides
of the obtained in equalities by 27n and finally taking limit as n −→∞,
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To prove (19), let (19) holds for each k  n, then we want to prove it
for case n = k + 1 is hold. For this replacing x by 3x in (19) , then we
have

f(3k+1x)

27k
∨ (−f(3x)) + f(3

k+1x)
27k

∧ (−f(3x))

 
k

i=1

1
27i
φ

3ix, 0



The dividing both sides of the above by 27, we get


f(3k+1x)
27k+1

∨

− f(3x)

27


+
f(3k+1x)
27k+1

∧

− f(3x)

27

 
1
27

k

i=1

1
27i
φ

3ix, 0


,

therefor

f(3k+1x)
27k+1

∨ (−f(3x)) + f(3
k+1x)

27k+1
∧ (−f(3x))

 
k+1

i=1

1
27i
φ
3ix

3
, 0

.

Now we show that

f(3nx)
27n


is a Cauchy sequence. Let n > m > 0, then:


f(3nx)
27n

∨

− f(3

mx)
27m


+
f(3nx)
27n

∧

− f(3

mx)
27m

 
n

i=m+1

1
27i
φ
3ix

3
, 0

<∞.

Taking the limit as m −→∞ yields:

lim
m−→∞


f(3nx)
27n

∨

− f(3

mx)
27m


+
f(3nx)
27n

∧

− f(3

mx)
27m

 = 0.

Then

f(3nx)
27n


is a Cauchy sequence in Y for all x ∈ X, and since Y is

Banach space, hence is converge to Y Let:

C(x) := lim
n−→∞

f(3nx)
27n

.

Replacing x by 3nx and y by 3ny in (16), and Then dividing both sides
of the obtained in equalities by 27n and finally taking limit as n −→∞,
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To prove (19), let (19) holds for each k  n, then we want to prove it
for case n = k + 1 is hold. For this replacing x by 3x in (19) , then we
have

f(3k+1x)

27k
∨ (−f(3x)) + f(3

k+1x)
27k

∧ (−f(3x))

 
k

i=1

1
27i
φ

3ix, 0



The dividing both sides of the above by 27, we get


f(3k+1x)
27k+1

∨

− f(3x)

27


+
f(3k+1x)
27k+1

∧

− f(3x)

27

 
1
27

k

i=1

1
27i
φ

3ix, 0


,

therefor

f(3k+1x)
27k+1

∨ (−f(3x)) + f(3
k+1x)

27k+1
∧ (−f(3x))

 
k+1

i=1

1
27i
φ
3ix

3
, 0

.

Now we show that

f(3nx)
27n


is a Cauchy sequence. Let n > m > 0, then:


f(3nx)
27n

∨

− f(3

mx)
27m


+
f(3nx)
27n

∧

− f(3

mx)
27m

 
n

i=m+1

1
27i
φ
3ix

3
, 0

<∞.

Taking the limit as m −→∞ yields:

lim
m−→∞


f(3nx)
27n

∨

− f(3

mx)
27m


+
f(3nx)
27n

∧

− f(3

mx)
27m

 = 0.

Then

f(3nx)
27n


is a Cauchy sequence in Y for all x ∈ X, and since Y is

Banach space, hence is converge to Y Let:

C(x) := lim
n−→∞

f(3nx)
27n

.

Replacing x by 3nx and y by 3ny in (16), and Then dividing both sides
of the obtained in equalities by 27n and finally taking limit as n −→∞,
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To prove (19), let (19) holds for each k  n, then we want to prove it
for case n = k + 1 is hold. For this replacing x by 3x in (19) , then we
have

f(3k+1x)

27k
∨ (−f(3x)) + f(3

k+1x)
27k

∧ (−f(3x))

 
k

i=1

1
27i
φ

3ix, 0



The dividing both sides of the above by 27, we get


f(3k+1x)
27k+1

∨

− f(3x)

27


+
f(3k+1x)
27k+1

∧

− f(3x)

27

 
1
27

k

i=1

1
27i
φ

3ix, 0


,

therefor

f(3k+1x)
27k+1

∨ (−f(3x)) + f(3
k+1x)

27k+1
∧ (−f(3x))

 
k+1

i=1

1
27i
φ
3ix

3
, 0

.

Now we show that

f(3nx)
27n


is a Cauchy sequence. Let n > m > 0, then:


f(3nx)
27n

∨

− f(3

mx)
27m


+
f(3nx)
27n

∧

− f(3

mx)
27m

 
n

i=m+1

1
27i
φ
3ix

3
, 0

<∞.

Taking the limit as m −→∞ yields:

lim
m−→∞


f(3nx)
27n

∨

− f(3

mx)
27m


+
f(3nx)
27n

∧

− f(3

mx)
27m

 = 0.

Then

f(3nx)
27n


is a Cauchy sequence in Y for all x ∈ X, and since Y is

Banach space, hence is converge to Y Let:

C(x) := lim
n−→∞

f(3nx)
27n

.

Replacing x by 3nx and y by 3ny in (16), and Then dividing both sides
of the obtained in equalities by 27n and finally taking limit as n −→∞,
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To prove (19), let (19) holds for each k  n, then we want to prove it
for case n = k + 1 is hold. For this replacing x by 3x in (19) , then we
have

f(3k+1x)

27k
∨ (−f(3x)) + f(3

k+1x)
27k

∧ (−f(3x))

 
k

i=1

1
27i
φ

3ix, 0



The dividing both sides of the above by 27, we get


f(3k+1x)
27k+1

∨

− f(3x)

27


+
f(3k+1x)
27k+1

∧

− f(3x)

27

 
1
27

k

i=1

1
27i
φ

3ix, 0


,

therefor

f(3k+1x)
27k+1

∨ (−f(3x)) + f(3
k+1x)

27k+1
∧ (−f(3x))

 
k+1

i=1

1
27i
φ
3ix

3
, 0

.

Now we show that

f(3nx)
27n


is a Cauchy sequence. Let n > m > 0, then:


f(3nx)
27n

∨

− f(3

mx)
27m


+
f(3nx)
27n

∧

− f(3

mx)
27m

 
n

i=m+1

1
27i
φ
3ix

3
, 0

<∞.

Taking the limit as m −→∞ yields:

lim
m−→∞


f(3nx)
27n

∨

− f(3

mx)
27m


+
f(3nx)
27n

∧

− f(3

mx)
27m

 = 0.

Then

f(3nx)
27n


is a Cauchy sequence in Y for all x ∈ X, and since Y is

Banach space, hence is converge to Y Let:

C(x) := lim
n−→∞

f(3nx)
27n

.

Replacing x by 3nx and y by 3ny in (16), and Then dividing both sides
of the obtained in equalities by 27n and finally taking limit as n −→∞,
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we have :

lim
n−→∞


1

27n
f


3n

x ∨ y + x ∧ y


− 2× 3n


(−x ∨ y) + (−x ∧ y)



+ f


1
9n


x ∨ (−y) + x ∧ (−y)


+

2
9n


x ∨ y + x ∧ y



− 3f


1
9n


x ∨ y + x ∧ y


− 3f


1
9n


x ∨ (−y) + x ∧ (−y)



− 48f


(x ∨ y + x ∧ y + x ∨ (−y) + x ∧ (−y)



2× 9n



 lim
n−→∞

1
27n
φ

3nx, 3ny


,

and therefor, we have

C


x ∨ y + x ∧ y


− 2


− x ∨ y) + (−x ∧ y)



+ C


x ∨ (−y) + x ∧ (−y)


+ 2


x ∨ y + x ∧ y



− 3C


x ∨ y + x ∧ y


− 3C


x ∨ (−y) + x ∧ (−y)



− 48C


1
2


x ∨ y + x ∧ y + x ∨ (−y) + x ∧ (−y)



= 0.

Then C : X −→ Y is a Cubic function. Let K : X −→ Y is an another
Cubic function with the property (17), then for all x ∈ X we have:

C(x) ∨ (−K(x)) + C(x) ∧ (−K(x))

  2×
∞

i=n

1
27i+1

φ

3ix, 0


.

Taking the limit as n −→ ∞, we have C(x) = K(x). Then C is the
unique Cubic function satisfying in the inequality (17), which ends the
proof. 
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