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1. Introduction

One can find basic notions of fixed point theory and fractional differ-
ential theory in some related books (see for examples, [3], [27], [31],
[32], [35]). There are a lot of published papers on fractional differential
equations (see for example, [1], [2], [4], [7], [10], [12]-[18], [24], [25], [29],
[33], [34], [36]-[40]) and inclusions ([6], [8], [9], [11], [20], [21]). Let (Y, ρ)
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be a metric space. Denote the class of all nonempty, closed, compact,
convex and compact subsets of Y by 2Y , Pcl(Y ), Pcp(Y ) and Pcp,cv(Y )
respectively. We say that a map T : Y → 2Y has a fixed point if there
is y ∈ Y such that y ∈ Ty. We say that T : Y → Pcl(Y ) is lower
semi-continuous whenever T−1(A) := {y ∈ Y : Ty ∩ A = ∅} is open for
each open set A of Y . Also, T is called upper semi-continuous whenever
{y ∈ Y : Ty ⊂ B} is open for every open set B of Y . A multifunc-
tion T : Y → Pcp(Y ) is compact whenever T (M) is compact for all
bounded subset M of Y . Also, T : I → Pcl(R) is called measurable if
t → dis(y, T (t)) = inf{|y− z| : z ∈ T (t)} is a measurable function for all
y ∈ R, where I = [1, e]. The Pompeiu-Hausdorff metric H : 2Y × 2Y →
[0,∞) is defined by H(D,G) = max{supd∈D ρ(d,G), supg∈G ρ(D, g)},
where ρ(D, g) = infd∈D ρ(d, g) ([19]). Then, (Pbd,cl(Y ),H) is a metric
space while (Pcl(Y ),H) is a generalized metric space ([19]). We say
that T : Y → 2Y is a contraction if there is γ ∈ (0, 1) such that
H(T (y), T (y))  γρ(y, y) for all y, y ∈ Y . Nadler and Covitz showed
that every closed valued contractive multi-valued map has a fixed point
on a complete metric space ([22]). A multi-valued map T : I×R2 → 2R is
said to be Caratheodory if t → T (t, x1, x2) is measurable for all x1, x2 ∈
R and (x1, x2) → T (t, x1, x2) is upper semi-continuous for almost all
t ∈ I ([23] and [28]). A Caratheodory multi-valued map T : I×R2 → 2R

is said to be L1-Caratheodory if for every δ > 0 there is φδ ∈ L1(I,R+)
so that  T (t, x1, x2) = sup{|w| : w ∈ T (t, x1, x2)}  φδ(t) for all
|x1|, |x2|  δ and for almost all t ∈ I ([23] and [28]). As you know,
the Hadamard fractional integral of order β > 0 for a map g is defined
by Iβb g(t

) = 1
Γ(β)

 t
b (ln t

s )
β−1 g(s)

s ds, where b > 0 and t > b ([26]). In

particular, we have Iβ1 g(t) := Iβg(t). Let n  1, 0 < a < b < ∞,
n − 1 < β < n and g ∈ ACn

δ [a, b], where ACn
δ [a, b] = {g : [a, b] →

R : δn−1g(t) ∈ AC[a, b], δ = t ddt}. The Caputo-Hadamard fractional
derivative is defined by C

HDβ
ag(t) = 1

Γ(n−β)
 t
a(ln

t
s)
n−β−1δn g(s)s ds :=

In−βa δng(t) ([26]). Also, the Caputo-Hadamard fractional derivative of
order n is defined by C

HDn
ag(t) = δng(t) ([26]). In particular, CHD0

1g(t) =
g(t) and C

HDα
1 g(t) := C

HDαg(t) for all t ([26]). Let β > 0, n = [β] + 1
and α > 0. Then, we have C

HDβ
a (ln t

a)
k = 0 for k = 0, 1, ..., n − 1 and

C
HDβ

a (ln t
a)

α−1 = Γ(α)
Γ(α−β)(ln

t
a)

α−β−1 for α > n. Also, CHDβ
a c = 0 for all
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c ∈ R ([26]). Let n  1, n − 1 < β < n and g ∈ ACn
δ [a, b]. Then,

Iβa (CHDβ
a )g(t) = g(t) +

n−1
i=0 ki(ln t

a)
i for some k0, k1, ..., kn−1 ∈ R. Also,

C
HDβ

a (I
β
a )g(t) = g(t) ([26]).

In 2013, Baleanu, Mohammadi and Rezapour studied the nonlinear frac-
tional differential equation Dαu(t) = f(t, u(t)) (t ∈ I = [0, T ], 0 < α <
1) via the periodic boundary condition u(0) = 0, where T > 0 and
f : I × R → R is a continuous increasing function and cDα denotes the
Caputo fractional derivative of order α ([15]). In 2015, Agarwal, Baleanu,
Hedayati and Rezapour reviewed the existence of solution for the Ca-
puto fractional differential inclusion cDqx(t) ∈ F (t, x(t),cDβx(t)) via
the boundary value conditions x(1) + x(1) =

 η
0 x(s)ds and x(0) = 0,

where 0 < η < 1, 1 < q  2, 0 < β < 1 and q − β > 1 ([7]). The
aim of this work is to study the existence of solution for the fractional
integro-differential inclusion

C
HDαx(t) ∈ F (t, x(t), Iβx(t)), (1)

with boundary values x(1) = g(e, x(e)), where 0 < α < 1, β > 0,
F : I×Rn × Rn → P (Rn) is multifunction under some conditions and
g : I × Rn → Rn is a map. Also, we show that S is infinite dimensional
under some conditions, where S is the set of solutions of the problem. We
need next results.

Lemma 1.1. ([30]) Let Q be a Banach space, T : I × Q → Pcp,cv(Q)
an L1-Caratheodory multi-valued function and A : L1(I,Q)→ C(I,Q) a
linear continuous map. Then, the map AoST : C(I,Q)→ Pcp,cv(C(I), Q)
defined by (AoST )(x) = A(ST,x) is closed graph.

Lemma 1.2. [5] Let T : [1, e]→ Pcp,cv(Rn) be measurable so that µ({t :
dimT (t) < 1}) = 0, where µ is the Lebesgue measure. Then there exist
linearly independent measurable selections s1(.), s2(.), ..., sm(.) of T for
all m  1.

Lemma 1.3. [5] Let D be convex and closed subset of a Banach space
Q and T : D → Pcp,cv(D) a δ-contraction. If dimT (t)  n for all t ∈ D,
then dimFix(T )  n.
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2. Main Results

Let w ∈ C(I,Rn), β ∈ (0, 1) and α > 0. Consider the fractional problem
C
HDαx(t) = w(t) with the boundary conditions x(1) = g(e, x(e)). Then,
the unique solution of the problem is given by

x(t) =
1

Γ(β)

 t

1
(ln

t

s
)β−1w(s)

s
ds+ g(e, x(e)),

(see [26]). We say that x ∈ C(I,Rn) is a solution for the problem
(1) if it satisfies the boundary condition and there is w ∈ L1(I,Rn)
such that w(t) ∈ F (t, x(t), Iβx(t)) for almost all t ∈ I and x(t) =

1
Γ(β)

 t
1 (ln

t
s)
β−1w(s)

s ds+ g(e, x(e)). The Banach space Y = C([1, e],Rn)
is endowed with the norm h = sups∈I |h(s)|. The set of selections of
F at x is denoted by

SF,x := {w ∈ L1(I,Rn) : w(t) ∈ F (t, x(t), Iβx(t)) for almost all t ∈ I}

for all x ∈ X.

Theorem 2.1. Let m, p ∈ C(I,R+) be such that l = m
Γ(β+1)(1+

1
Γ(α+1))+

p < 1. Assume that F : I × Rn × Rn → Pcv,cp(Rn) is a multi-
valued function such that the map t  F (t, x1, x2) is measurable and
H(F (t, x1, x2), F (t, y1, y2))  m(t)

2
i=1(|xi − yi|) and g : I × Rn → Rn

is a map such that |g(t, x) − g(t, y)|  p(t)|x − y| for almost all t ∈ I
and ∈ x1, x2, y1, y2, x, y ∈ Rn. Then the inclusion problem (1) has a
solution.

Proof. Since t  F (t, x(t), Iαx(t)) is closed valued and measurable for
all x ∈ Y , SF,x is nonempty. Define M : X → 2X by

M(x) =

h ∈ Y : ∃ w ∈ SF,x s. t. h(t) = w(t) for all t ∈ I


,

where w(t) = 1
Γ(β)

 t
1 (ln

t
s)
β−1 v(s)

s ds + g(e, x(e)) for all t ∈ I. We show
that M(x) is closed for all x ∈ Y . Let x ∈ Y and {un}n1 be a sequence
in Y (x) with un → u. For every n  1, choose wn ∈ SF,x such that
un(t) = 1

Γ(β)

 t
1 (ln

t
s)
β−1wn(s)

s ds+ g(e, x(e)) for almost all t ∈ I. Since F

has compact values, {wn}n1 has a subsequence which converges to some
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w ∈ L1(I,R). Denote the subsequence again by {wn}n1. One can check
that w ∈ SF,x and un(t) → u(t) = 1

Γ(β)

 t
1 (ln

t
s)
β−1w(s)

s ds + g(e, x(e))
for all t ∈ I. Hence, w ∈ M(x). Thus, M has closed values. Now, we
show that M is contractive with constant l = m

Γ(β+1)(1 + 1
Γ(α+1)) +

p < 1. Let x, y ∈ Y and h1 ∈ M(y). Choose w1 ∈ SF,y such that
h1(t) = 1

Γ(β)

 t
1 (ln

t
s)
β−1w1(s)

s ds+ g(e, y(e)) for almost all t ∈ I. Since

H


F (t, x(t), Iαx(t)), F (t, y(t), Iαy(t))



 m(t)

|x(t)− y(t)|+ |Iαx(t)− Iαy(t)|


,

for almost all t ∈ I, there exists w1 ∈ (F (t, x(t), Iαx(t)) such that

|w1(t)− w1|  m(t)

|x(t)− y(t)|+ |Iαx(t)− Iαy(t)|


,

for almost all t ∈ I. Define the multifunction U1 : I → 2R
n
by

U1(t) =

w ∈ Rn : |v1(t)−w|  m(t)


|x(t)−y(t)|+ |Iαx(t)−Iαy(t)|



for almost all t ∈ I


.

One can check that U1(.)

(F (., x(.), Iαx(t), Iαy(.)) is measurable.

Choose w2 ∈ SF,x such that

|w1(t)− w2(t)|  m(t)

|x(t)− y(t)|+ |Iαx(t)− Iαy(t)|


,

for almost all t ∈ I. Now, consider h2 ∈M(x) which is defined by

h2(t) =
1

Γ(β)

 t

1
(ln

t

s
)β−1w2(s)

s
ds+ g(e, x(e)).

Hence, we get

|h1(t)−h2(t)| 
1

Γ(β)

 t

1
(t−s)β−1|w1(s)−w2(s)|ds+|g(e, x(e))−g(e, y(e))|
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


m
Γ(β + 1)

(1 +
1

Γ(α+ 1)
) + p


x− y,

and so h1−h2 


m
Γ(β+1)(1 +

1
Γ(α+1)) + p


x−y = lx−y. Thus,

M is a contraction with closed values and so has a fixed point x0. It is
easy to check that x0 is a solution for the inclusion problem (1). 

Lemma 2.2. Assume that z ∈ C(I,R+) and T : I × Rn × Rn →
Pcv,cp(Rn) is a multi-valued function such that t  T (t, x1, x2) is mea-
surable and

T (t, x1, x2) = sup{|w| : w ∈ T (t, x1, x2)}  z(t)

for almost all t ∈ I and ∈ x1, x2 ∈ Rn. Define G1 : X → P (X) by

G1(x) =

k ∈ Y : ∃ w ∈ ST,x such that k(t) = s(t) for all t ∈ I


,

where s(t) = 1
Γ(β)

 t
1 (ln

t
s)
β−1w(s)

s ds+g(e, x(e)). Then G1(x) ∈ Pcp.cv(X)
for all x ∈ X.

Proof. Note that, G1 = θ ◦ ST , where θ : L1(I,Rn) → Y is the con-
tinuous map defined by θv(t) = 1

Γ(β)

 t
1 (ln

t
s)
β−1 v2(s)

s ds+ g(e, x(e)) (see
Lemma 1.1). Let x ∈ Y and {wn} a sequence in ST,x. Then, wn(t) ∈
T (t, x(t), Iαx(t)) for almost t ∈ I. Since T (t, x(t), Iαx(t)) is compact for
all t ∈ I, we can choose a convergent subsequence of {wn(t)} (denote it
again by {wn(t)}) which converges in measure to some w ∈ ST,x. Since
θ is continuous, θwn(t) → θw(t) pointwise on I. For showing uniform
convergence, we show that {θwn} is equi-continuous. For τ < t ∈ I, we
have

|θwn(t)− θwn(τ)| =

| 1
Γ(β)

 t

1
(ln(

t

s
))β−1wn(s)

s
ds− 1

Γ(β)

 τ

1
(ln(

t

s
))β−1wn(s)

s
ds| 

| 1
Γ(β)

 τ

1

(ln(
t

s
))β−1 − (ln(

τ

s
))β−1)

wn(s)
s

ds|+ | 1
Γ(β)

 t

τ

ln(
t

s
))β−1wn(s)

s
ds|.

This shows that {θwn} is equi-continuous and by using the Arzela-Ascoli
theorem, there is a uniformly convergent subsequence (we show it again
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by {wn}) such that θwn → θw. Note that, θw ∈ θ(ST,x). Hence, G1x =
θ(ST,x) is compact for all x ∈ Y . Now, we prove that G1x is convex
for all x ∈ Y . For h, h ∈ G1x, there are w,w ∈ ST,x such that h(t) =

1
Γ(β)

 t
1 (ln

t
s)
β−1w(s)

s ds+ g(e, x(e)) and h(t) = 1
Γ(β)

 t
1 (ln

t
s)
β−1w

(s)
s ds+

g(e, x(e)) for almost all t ∈ I. Let 0  λ  1. Then, λh(t)+(1−λ)h(t) =
1

Γ(β)

 t
1 (ln

t
s)
β−1 (λw(s)+(1−λ)w(s))

s ds for almost all t. Since ST,x is convex
(because T has convex values), λh+ (1− λ)h ∈ G1x. 
Now, we provide application of our last results. In fact, it is about
dimS. It is well-known that FixG1 = S.

Theorem 2.3. Assume that m, p ∈ C(I,R+) and T : I × R2 × R2 →
Pcv,cp(R2) is a multifunction and so that H(T (t, x1, x2), T (t, y1, y2)) 
m(t)

2
i=1 |xi−yi|, the map t  T (t, x1, x2) is measurable, T (t, x1, x2) =

sup{|v| : v ∈ T (t, x1, x2)}  m(t) and g : I×Rn → Rn is a map such that
|g(t, x)−g(t, y)|  p(t)|x−y| for almost all t ∈ I and x1, x2, y1, y2, x, y ∈
Rn. If µ({t : dimT (t, x1, x2) < 1 for some x1, x2 ∈ Rn}) = 0 and
l := m

Γ(β+1)(1 +
1

Γ(α+1)) + p < 1, then dimS =∞.

Proof. Again consider the operator G1 in last result. By using Lemma
2.2, G1x ∈ Pcp,cv(Y ) for all x ∈ Y . Similar to proof of Theorem 2.1,
we can show that G1 is contraction. Let x ∈ Y , m  1 and G(t) =
T (t, x(t), Iαx(t)) for all t. By using Lemma 1.2, there exist linearly in-
dependent measurable selections v1(.), v2(.), ..., vm(.) of G. Put hi(t) =

1
Γ(β)

 t
1 (ln

t
s)
β−1 vi(s)

s ds+ g(e, x(e)) for all 1  i  m. If
m

i=1 aihi(t) = 0
for almost t ∈ I, by using the Caputo-Hadamard derivative we getm

i=1 aivi(t) = 0 for almost t ∈ I. Hence ai = 0 for all 1  i  m. This
implies that hi are linearly independent and so dimG1x  m. By using
Lemma 1.3, we conclude that dimS =∞. 
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Rn. If µ({t : dimT (t, x1, x2) < 1 for some x1, x2 ∈ Rn}) = 0 and
l := m

Γ(β+1)(1 +
1

Γ(α+1)) + p < 1, then dimS =∞.

Proof. Again consider the operator G1 in last result. By using Lemma
2.2, G1x ∈ Pcp,cv(Y ) for all x ∈ Y . Similar to proof of Theorem 2.1,
we can show that G1 is contraction. Let x ∈ Y , m  1 and G(t) =
T (t, x(t), Iαx(t)) for all t. By using Lemma 1.2, there exist linearly in-
dependent measurable selections v1(.), v2(.), ..., vm(.) of G. Put hi(t) =

1
Γ(β)

 t
1 (ln

t
s)
β−1 vi(s)

s ds+ g(e, x(e)) for all 1  i  m. If
m

i=1 aihi(t) = 0
for almost t ∈ I, by using the Caputo-Hadamard derivative we getm

i=1 aivi(t) = 0 for almost t ∈ I. Hence ai = 0 for all 1  i  m. This
implies that hi are linearly independent and so dimG1x  m. By using
Lemma 1.3, we conclude that dimS =∞. 
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