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1. Introduction

Let (X, d) be a metric space, and A,B be subsets of X. A mapping
T : A ∪ B → A ∪ B is called cyclic if T (A) ⊆ B and T (B) ⊆ A;
similarly, a mapping S : A∪B → A∪B is called noncyclic if S(A) ⊆ A
and S(B) ⊆ B. We begin with the following generalization of Banach’s
contraction principle.

Theorem 1.1. (See [17]) Assume that (X, d) is a complete metric space,
and that A and B are two nonempty, closed subsets of X. Assume further
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that T is a cyclic mapping that satisfies

d(Tx, Ty)  αd(x, y),

where α ∈ (0, 1) and x ∈ A, y ∈ B. Then T has a unique fixed point in
A ∩B.

Again, for given nonempty subsets A and B inX, a mapping T : A∪B →
A∪B is called a cyclic contraction if T is cyclic and there is an α ∈ (0, 1)
such that

d(Tx, Ty)  αd(x, y) + (1− α)dist(A,B);

where x ∈ A, y ∈ B, and

dist(A,B) := inf{d(x, y) : (x, y) ∈ A×B}.

Given T : A∪B → A∪B, we call an element x ∈ A∪B a best proximity
point of T if

d(x, Tx) = dist(A,B).

The following result for contractions was proved in [6].

Theorem 1.2. (See [6]) Let X be a Banach space that is uniformly
convex, and let A and B be two nonempty, closed, convex subsets in
X. Assume further that T : A ∪ B → A ∪ B is a cyclic contraction
mapping, and that x0 ∈ A is given. Put xn+1 := Txn where n  0. Then
there is a unique element x ∈ A such that x2n tends to x, moreover

x− Tx = dist(A,B).

In the study of best proximity points, we usually consider a cyclic
mapping T . The objective here is to minimize the expression d(x, Tx)
where x runs through the domain of T ; that is A ∪ B. In other words,
we want to find

min{d(x, Tx) : x ∈ A ∪B}.

If A and B intersect, the solution is clearly a fixed point of T ; otherwise
we have

d(x, Tx)  dist(A,B), ∀x ∈ A ∪B,

so that the point at which the equality occurs is called a best proximity
point of T . This point of view dominates the literature.
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Recently, N. Shahzad, M. Gabeleh, and O. Olela Otafudu [24] consid-
ered two mappings T and S simultaneously and established the following
result. Here T is assumed to be cyclic and S is assumed to be non-
cyclic. According to [24], for a nonempty pair of subsets (A,B) in X,
and a cyclic-noncyclic pair (T ;S) on A∪B (that is, T : A∪B → A∪B
is cyclic and S : A∪B → A∪B is noncyclic); they call a point p ∈ A∪B
a coincidence-best proximity point for (T ;S) provided that

d(Sp, Tp) = dist(A,B).

In the especial case that S equals the identity mapping, the point p will
become a best proximity point of T . In the case that dist(A,B) = 0,
the point p is called a coincidence point of (T ;S) (see [10] and [13] for
more information). With the definition just given, and depending on the
situation as to whether S equals the identity mapping, or if the distance
between A and B equals zero, one obtains a best proximity point of T , or
a coincidence point of T and S. This was in fact the philosophy behind
the phrase “coincidence-best proximity point”. We start by recalling the
notion of a cyclic-noncyclic contraction.

Definition 1.3. (See [24]) Assume that (A,B) are nonempty subsets
of a metric space (X, d) and that T, S : A ∪ B → A ∪ B are two map-
pings. We call the pair (T ;S) a cyclic-noncyclic contraction pair if it
satisfies the following conditions:

(1) (T ;S) is cyclic-noncyclic on A ∪B.

(2) There is a number r ∈ (0, 1) for which

d(Tx, Ty)  rd(Sx, Sy) + (1− r)dist(A,B), ∀x ∈ A, y ∈ B.

To state the main result of [24], we need to recall the notion of convex-
ity in the framework of metric spaces. This concept was introduced by
Takahashi [27], (see also [25]).

Definition 1.4. Consider a metric space (X, d) and the interval [0, 1]. A
mapping W : X ×X × I → X is said to be a convex structure on X if
for every (x, y;λ) ∈ X ×X × I and u ∈ X,

d(u,W(x, y;λ))  λd(u, x) + (1− λ)d(u, y).
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A metric space (X, d) together with a convex structure W, is called a
convex metric space. In this case, we shall at times write (X, d,W) is a
convex structure. For example, all Banach spaces and the convex subsets
of the Banach spaces satisfy this property. A subset K of (X, d,W) is
said to be convex if for each x and y in K and all λ ∈ [0, 1] we have
W(x, y;λ) ∈ K.

In a similar fashion, one may define a uniformly convex subset of (X, d). In-
deed, we say that the space (X, d,W) is uniformly convex if given ε > 0,
there is a number α depending on ε such that for r > 0 and x, y, z ∈ X
with d(z, x)  r, d(z, y)  r and d(x, y)  rε,

d(z,W(x, y;
1
2
))  r(1− α) < r.

As a typical example of a uniformly convex metric space, we refer to
uniformly convex Banach spaces.

Definition 1.5. (See [24]) Assume that (X, d) is a metric space, and
that A, B are two nonempty subsets of X. We call S : A∪B → A∪B a
relatively anti-Lipschitzian mapping if there is a number c > 0 for which

d(x, y)  c d(Sx, Sy), x ∈ A, y ∈ B.

Theorem 1.6. (See [24]) Let (X, d,W) be a complete uniformly convex
metric space, and let (A,B) be a nonempty, closed pair of subsets of X
such that A is convex. Assume that (T ;S) is a cyclic-noncyclic contrac-
tion pair on A∪B such that T (A) ⊆ S(B) and T (B) ⊆ S(A), and that S
is continuous on A and relatively anti-Lipschitzian on A∪B. Then (T ;S)
has a coincidence-best proximity point in A. Furthermore, if x0 ∈ A and
Sxn+1 := Txn, then (x2n) is convergent to the coincidence-best proxim-
ity point of (T ;S).

Existence results related to best proximity pairs was first studied in
[7]. They used a geometric property which is called proximal normal
structure, indeed, they studied noncyclic relatively nonexpansive map-
pings. For details on the theory we refer the reader to [1, 2, 3, 4, 5, 8, 9,
12, 15, 22, 23, 26] and the references therein.

In the current paper, we study sufficient conditions which ensure the
existence of coincidence-best proximity point for a pair of m-contraction
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mappings in convex metric spaces. We call a pair (T ;S) anm-contraction
pair if there exists a nonnegative integer m satisfying the following con-
ditions:

(1) (T ;S) is a cyclic-noncyclic pair on A ∪B.

(2) There exists a real number α ∈ (0, 1) such that for each (x, y) ∈ A×B
we have

d(Tx, Ty)  αd(Smx, Smy) + (1− α)dist(A,B).

If m = 1, we get back to Definition 1.3, but there are m-contraction
pairs that are not cyclic-noncyclic contraction pairs (see Example 2.2
below). Therefore, we get a true generalization of known results.

2. The Main Result

We begin this section with the following definition.

Definition 2.1. Assume that (X, d) is a metric space and that A,B
are nonempty subsets of X. Assume further that the mappings T, S :
A∪B → A∪B are given. We call (T ;S) an m-contraction pair if there
exists a nonnegative integer m satisfying the following conditions:

(1) (T, S) is a cyclic-noncyclic pair on A ∪B.

(2) There exists a real number α ∈ (0, 1) such that for each (x, y) ∈ A×B
we have

d(Tx, Ty)  αd(Smx, Smy) + (1− α)dist(A,B).

If we define S0 = I, then every cyclic contraction pair is a 0-contraction
pair. If m = 1, the class of 1-contraction pairs reduces to the class of
cyclic-noncyclic pairs. In the following, we verify that the new class is
much wider.

Example 2.2. Let X := R be equipped with d(x, y) = |x − y|. For
A = (−∞,−3] and B = [3,+∞) we define T, S : A ∪B → A ∪B by

Tx := −2x, ∀x ∈ A ∪B and Sx :=


2x+ 1 if x ∈ A
2x− 1 if x ∈ B.



142 A. ABKAR AND M. NOROUZIAN

Then (T ;S) is a 3-contraction pair with α = 1
4 . Indeed,

S2x :=


4x+ 3 if x ∈ A
4x− 3 if x ∈ B

and S3x :=


8x+ 7 if x ∈ A
8x− 7 if x ∈ B.

Thus, for all (x, y) ∈ A×B we have

|Tx− Ty| = (2y − 2x)  1
4
(8y − 8x− 14) +

3
4
(6)

= α|S3x− S3y|+ (1− α)dist(A,B).

But, for each α ∈ (0, 1), we have

|Tx− Ty| = (2y − 2x) > 2y − 2x− 2
= |Sx− Sy|
 α|Sx− Sy|+ (1− α)dist(A,B),

which means that (T ;S) is not a cyclic-noncyclic contraction pair.

Remark 2.3. Notice that the condition (2) of the above definition im-
plies that

d(Tx, Ty)  d(Smx, Smy), ∀(x, y) ∈ A×B.

Moreover, if S is a noncyclic relatively nonexpansive mapping; which
means that

d(Sx, Sy)  d(x, y), ∀(x, y) ∈ A×B,

then
d(Smx, Smy)  d(x, y), ∀(x, y) ∈ A×B,

that is, T is a cyclic contraction. In addition, if in the above definition
S is assumed to be continuous, then T would be continuous as well.

We begin with the following lemma in which m is a fixed nonnegative
integer.

Lemma 2.4. Let (A,B) be a nonempty pair of subsets of a metric space
(X, d) and let (T ;S) be a cyclic-noncyclic pair. Assume that T (A) ⊆
Sm(B) and T (B) ⊆ Sm(A). Then there exists sequences {xm,n} and
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{x1,n} in X such that for all n  0 we have Txm,n = Smxm,n+1 =
Sx1,n+1. Moreover, {xm,2n}, {x1,2n} are sequences in A, and {xm,2n−1},
{x1,2n−1} are sequences in B.

Proof. Let x1,0 = xm,0 ∈ A. Since Txm,0 ∈ Sm(B) ⊆ S(B), there
exists xm,1, x1,1 ∈ B such that Txm,0 = Smxm,1 = Sx1,1. Again, since
Txm,1 ∈ Sm(A) ⊆ S(A), there exists xm,2, x1,2 ∈ A such that Txm,1 =
Smxm,2 = Sx1,2.

Continuing this process, we obtain sequences {xm,n}, {x1,n} such that
{xm,2n}, {x1,2n} are inA and {xm,2n+1}, {x1,2n+1} are inB, and Txm,n =
Smxm,n+1 = Sx1,n+1 for all n  0. 

In the setting of the above lemma, it is clear that for each m ∈ N we
have

Sm(A) ⊆ S(A), Sm(B) ⊆ S(B),

because, the mapping S is noncyclic, moreover

Sm(A) ⊆ Sm−1(A) ⊆ · · · ⊆ S2(A) ⊆ S(A) ⊆ A,

Sm(B) ⊆ Sm−1(B) ⊆ · · · ⊆ S2(B) ⊆ S(B) ⊆ B.

Lemma 2.5. Let (A,B) be a nonempty pair of subsets of a metric space
(X, d) and let (T ;S) be an m-contraction pair. Assume that T (A) ⊆
Sm(B) and T (B) ⊆ Sm(A). For x1,0 = xm,0 ∈ A, define Txm,n =
Smxm,n+1 = Sx1,n+1 for each n  0. Then we have

d(Sx1,2n, Sx1,2n+1)→ dist(A,B),

d(Smxm,2n, Smxm,2n+1)→ dist(A,B).
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Proof. We note that

d(Sx1,2n+1, Sx1,2n+2) = d(Smxm,2n+1, Smxm,2n+2)
= d(Txm,2n, Txm,2n+1)
 αd(Smxm,2n, Smxm,2n+1) + (1− α)dist(A,B)
= αd(Txm,2n−1, Txm,2n) + (1− α)dist(A,B)
 α [αd(Smxm,2n−1, Smxm,2n)
+ (1− α)dist(A,B)] + (1− α)dist(A,B)

= α2d(Smxm,2n−1, Smxm,2n) + (1− α2)dist(A,B)

= α2d(Txm,2n−2, Txm,2n−1) + (1− α2)dist(A,B)
 · · ·
 α2nd(Txm,0, Txm,1) + (1− α2)dist(A,B).

Now, if n→∞, we conclude that

d(Sx1,2n, Sx1,2n+1)→ dist(A,B),

d(Smxm,2n, Smxm,2n+1)→ dist(A,B). 

Lemma 2.6. Let (A,B) be a nonempty pair of subsets of a metric space
(X, d) and let (T ;S) be an m-contraction pair such that T (A) ⊆ Sm(B)
and T (B) ⊆ Sm(A), moreover, assume that T and S commute on A∪B.
For x1,0 = xm,0 ∈ A, define Txm,n = Smxm,n+1 = Sx1,n+1 for each
n  0. Then we have

d(Smxm,2n, Smx1,2n+1)→ dist(A,B).

Proof. We note that
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-d(Smxm,2n, Smx1,2n+1) = d(Smxm,2n, Sm−1(Sx1,2n+1))

= d(Smxm,2n, Sm−1(Txm,2n))

= d(Smxm,2n, T (Sm−1xm,2n))

= d(Txm,2n−1, T (Sm−1xm,2n))

 αd(Smxm,2n−1, Sm(Sm−1xm,2n))
+ (1− α)dist(A,B)

= αd(Smxm,2n−1, Sm−1(Smxm,2n))
+ (1− α)dist(A,B)

= αd(Smxm,2n−1, Sm−1(Txm,2n−1))
+ (1− α)dist(A,B)

= αd(Smxm,2n−1, T (Sm−1xm,2n−1))
+ (1− α)dist(A,B)

= αd(Txm,2n−2, T (Sm−1xm,2n−1))
+ (1− α)dist(A,B)

 α [αd(Smxm,2n−2, Sm(Sm−1xm,2n−1))
+ (1− α)dist(A,B)] + (1− α)dist(A,B)

= α2d(Smxm,2n−2, Sm−1(Smxm,2n−1))

+ (1− α2)dist(A,B)

= α2d(Smxm,2n−2, Sm−1(Txm,2n−2))

+ (1− α2)dist(A,B)
 · · ·
 α2nd(Smxm,0, Sm−1(Txm,0))

+ (1− α2n)dist(A,B)

= α2nd(Smxm,0, Sm−1(Sx1,1))

+ (1− α2n)dist(A,B)

= α2nd(Smxm,0, Smx1,1)

+ (1− α2n)dist(A,B).
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Now, if we let n→∞ in the above relation, we conclude that

d(Smxm,2n, Smx1,2n+1)→ dist(A,B). 

Theorem 2.7. Let (A,B) be a nonempty pair of subsets of a metric
space (X, d) and let (T ;S) be an m-contraction pair defined on A ∪
B. Assume that T (A) ⊆ Sm(B) and T (B) ⊆ Sm(A) and S is continuous
on A and assume T and S commute on A ∪ B. For x1,0 = xm,0 ∈ A,
define Txm,n = Smxm,n+1 = Sx1,n+1 for each n  0. If {x1,2n} has a
convergent subsequence in A, then the pair (T ;S) has a coincidence-best
proximity point in A; that is, there exists p ∈ A such that

d(Sp, Tp) = dist(A,B).

Proof. Let {x1,2nk} be a subsequence of {x1,2n} such that x1,2nk → p ∈
A. Then by Lemma 2.6 we have

dist(A,B)  d(Sp, Tp)
 d(Sp, Txm,2nk−1) + d(Txm,2nk−1, Tp)
= d(Sp, Sx1,2nk) + d(Tp, Txm,2nk−1)
 d(Sp, Sx1,2nk) + d(Smp, Smxm,2nk−1)
→ dist(A,B),

that is,
d(Sp, Tp) = dist(A,B). 

Lemma 2.8. Let (A,B) be a nonempty pair of subsets of a metric
space (X, d) and let (T ;S) be an m-contraction pair defined on A ∪
B. Assume that T (A) ⊆ Sm(B) and T (B) ⊆ Sm(A) and assume T and
S commute on A∪B. For x1,0 = xm,0 ∈ A, define Txm,n = Smxm,n+1 =
Sx1,n+1 for each n  0. Then {Smxm,2n}, {Smx1,2n} and {Sx1,2n} are
bounded sequences in A and {Smxm,2n+1}, {Smx1,2n+1} and {Sx1,2n+1}
are bounded sequences in B.

Proof. Since for each n  0, Smxm,n = Sx1,n, and since

d(Sx1,2n, Sx1,2n+1)→ dist(A,B),
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d(Smxm,2n, Smx1,2n+1)→ dist(A,B),

and
d(Smxm,2n, Smxm,2n+1)→ dist(A,B),

it suffices to show that {Smxm,2n} is bounded in A. Assume to the
contrary that there exists N0 ∈ N such that

d(T (Smxm,1), Smxm,2N0+1) > M,

d(T (Smxm,1), Smxm,2N0−1) M,

where,

M > max{ α2

1− α2
d(Sm(Smxm,0), T (Smxm,1))

+ dist(A,B), d(T (Smxm,1), Txm,0)}.

By the above assumption, we have

M − dist(A,B)
α2

+ dist(A,B)

<
d(T (Smxm,1), Smxm,2N0+1)− dist(A,B)

α2

+ dist(A,B)

 d(T (Smxm,1), Smxm,2N0+1)
α2

+
(α2 − 1)d(T (Smxm,1), Smxm,2N0+1)

α2

= d(T (Smxm,1), Smxm,2N0+1)
= d(T (Smxm,1), Txm,2N0)
 d(Sm(Smxm,1), Smxm,2N0)
= d(Sm(Txm,0), Txm,2N0−1)
= d(T (Smxm,0), Txm,2N0−1)
 d(Sm(Smxm,0), Smxm,2N0−1)
 d(Sm(Smxm,0), T (Smxm,1))
+ d(T (Smxm,1), Smxm,2N0−1)
 d(Sm(Smxm,0), T (Smxm,1)) +M.
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This implies that

M − dist(A,B)
α2

+ dist(A,B) < d(Sm(Smxm,0), T (Smxm,1)) +M,

hence,

M − (1− α2)dist(A,B) < α2[d(Sm(Smxm,0), T (Smxm,1)) +M ],

and therefore

(1− α2)M < α2d(Sm(Smxm,0), T (Smxm,1)) + (1− α2)dist(A,B).

It now follows that

M <
α2

1− α2
d(Sm(Smxm,0), T (Smxm,1)) + dist(A,B),

which is a contradiction by the choice of M . 
We recall that a subset A ⊆ X is said to be boundedly compact if the
closure of every bounded subset of A is compact and is contained in A.

Theorem 2.9. Let (A,B) be a nonempty pair of subsets of a metric
space (X, d) such that A is boundedly compact and let (T ;S) be an m-
contraction pair defined on A ∪ B. Assume that T (A) ⊆ Sm(B) and
T (B) ⊆ Sm(A) and that T and S commute on A ∪ B. If S is relatively
anti-Lipschitzian and continuous on A, then there exists p ∈ A such that

d(Sp, Tp) = dist(A,B).

Proof. For x1,0 = xm,0 ∈ A, define Txm,n = Smxm,n+1 = Sx1,n+1 for
each n  0. Since by Lemma 2.8, {Sx1,2n} is bounded on A, and A
is boundedly compact, there exists a subsequence {Sx1,2nk} of {Sx1,2n}
such that

Sx1,2nk → Sp,

for some p ∈ A. We know that S is a relatively anti-Lipschitzian, there-
fore

d(x1,2nk , p)  cd(Sx1,2nk , Sp)→ 0, k →∞.

This implies that {x1,2nk} is a convergent subsequence of {x1,2n}. Now,
the results follows from Theorem 2.7. 
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Remark 2.10. Under the above conditions, the pair (T ;Sm) is a cyclic-
noncyclic contraction, so that the Theorem 1.6 can be invoked to guar-
antee the existence of p ∈ A ∪B such that

d(Smp, Tp) = dist(A,B).

This, in general, does not imply that d(Sp, Tp) = dist(A,B) unless we
already know that Smp = Sp. This latter happens if p is the unique fixed
point of S. We emphasize that we have made no assumption on the pair
(A,B) to satisfy the so called P -property. The following examples reveal
that the conclusion of Theorem 2.9 is not a consequence of Theorem 1.6.

Example 2.11. Consider X := R with the usual metric. For A =
(−∞,−1] and B = [1,+∞) define T, S : A ∪B → A ∪B by

Tx := −x, ∀x ∈ A ∪B and Sx :=


2x+ 1 if x ∈ A
2x− 1 if x ∈ B.

Then (T ;S) is a 3-contraction pair with α = 1
8 . Indeed,

S2x :=


4x+ 3 if x ∈ A
4x− 3 if x ∈ B

and S3x :=


8x+ 7 if x ∈ A
8x− 7 if x ∈ B.

Thus, for all (x, y) ∈ A×B we have

|Tx− Ty| = (y − x)  1
8
(8y − 8x− 14) +

7
8
(2)

= α|S3x− S3y|+ (1− α)dist(A,B).

Also, T (A) = B ⊆ S3(B) and T (B) = A ⊆ S3(A). Moreover, S is
continuous on A (note that the theorem just requires the continuity of
S on A, not on the whole domain) and A is boundedly compact in X.

Besides, S is relatively anti-Lipschitzian on A ∪ B with c = 1. In fact,
for all (x, y) ∈ A×B we have

|Sx− Sy| = 2y − 2x− 2  |x− y|.

Finally, for each x ∈ A we have

T (Sx) = −(2x+ 1) = −2x− 1 = S(−x) = S(Tx),
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and for each x ∈ B we have

T (Sx) = −(2x− 1) = −2x+ 1 = S(−x) = S(Tx),

that is, T and S commute onA∪B. Therefore, the existence of coincidence-
best proximity point of the pair (T ;S) follows from Theorem 2.9, that
is, there exists p ∈ A such that

|Tp− Sp| = dist(A,B) = 2 or − p− (2p+ 1) = 2,

which implies that p = −1. In this case, p is a fixed point of S and so,
p is a best proximity point of T .

The following example shows that there exists a coincidence-best prox-
imity point that is not a fixed point for Sm and S. This means that
the result of the above theorem does not follow from Theorem 1.6, in
general.

Example 2.12. Let X := R be equipped with the usual metric. For
A = (−∞, 1] and B = [−1,+∞) define T, S : A ∪B → A ∪B by

Tx := −x, ∀x ∈ A ∪B and Sx :=


2x− 1 if x ∈ A
2x+ 1 if x ∈ B.

Then (T ;S) is a 2-contraction pair with α = 1
4 . Indeed,

S2x :=


4x− 3 if x ∈ A
4x+ 3 if x ∈ B.

Thus, for all (x, y) ∈ A×B we have

|Tx− Ty| = |y − x|  1
4
|4y − 4x+ 6|+ 3

4
(0)

= α|S2y − S2x|+ (1− α)dist(A,B).

Also, T (A) = B ⊆ S2(B) and T (B) = A ⊆ S2(A). Moreover, S is
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Finally, for each x ∈ A we have

T (Sx) = −(2x− 1) = −2x+ 1 = S(−x) = S(Tx)

and for each x ∈ B we have

T (Sx) = −(2x+ 1) = −2x− 1 = S(−x) = S(Tx),

that is, T and S commute on A∪B. Thus, the existence of coincidence-
best proximity point of the pair (T ;S) follows from Theorem 2.9, that
is, there exists p ∈ A such that

|Tp− Sp| = dist(A,B) = 0 or − p− (2p− 1) = 0,

which implies that p = 1
3 . In this case, p is not a fixed point of the

mapping S and so, p is a best proximity point of the cyclic mapping T .

3. Uniformly Convex Metric Spaces

In this section we prove the same result in the setting of uniformly convex
metric spaces. We begin with the following lemma.

Lemma 3.1. Let (A,B) be a nonempty pair of subsets of a uniformly
convex metric space (X, d,W) such that A is convex. Let (T ;S) be an m-
contraction pair defined on A∪B such that T (A) ⊆ Sm(B) and T (B) ⊆
Sm(A). For x1,0 = xm,0 ∈ A, define Txm,n = Smxm,n+1 = Sx1,n+1 for
each n  0. Then

d(Sx1,2n+2, Sx1,2n)→ 0,

d(Sx1,2n+3, Sx1,2n+1)→ 0,

d(Smxm,2n+2, Smxm,2n)→ 0,

and
d(Smxm,2n+3, Smxm,2n+1)→ 0.

Proof. We prove that d(Smxm,2n+2, Smxm,2n) → 0. Assume to the

contrary that there exists ε0 > 0 such that for each k  1, there exists
nk  k for which

d(Smxm,2nk+2, S
mxm,2nk)  ε0.
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Choose 0 < γ < 1 such that ε0
γ > dist(A,B) and choose ε > 0 such that

0 < ε < min

ε0
γ
− dist(A,B),

dist(A,B)α(γ)
1− α(γ)


.

By Lemma 2.5, since d(Smxm,2nk , S
mxm,2nk+1) → dist(A,B), there ex-

ists N ∈ N such that

d(Smxm,2nk , S
mxm,2nk+1)  dist(A,B) + ε,

d(Smxm,2nk+2, S
mxm,2nk+1)  dist(A,B) + ε,

and
d(Smxm,2nk , S

mxm,2nk+2)  ε0 > γ(dist(A,B) + ε).

It now follows from the uniform convexity of X and the convexity of A
that

dist(A,B)  d(Smxm,2nk+1,W(Smxm,2nk , S
mxm,2nk+2,

1
2
))

 (dist(A,B) + ε)(1− α(γ))

< dist(A,B) +
dist(A,B)α(γ)

1− α(γ)
(1− α(γ))

= dist(A,B),

which is a contradiction. Similarly, we see that d(Smxm,2n+3, Smxm,2n+1)→
0. Since for all n  0 we have

Smxm,n = Sx1,n,

the result follows. 
The following Theorem guarantees the existence and convergence of
coincidence-best proximity points for m-contraction mappings in uni-
formly convex metric spaces.

Theorem 3.2. Let (A,B) be a nonempty, closed pair of subsets of a
complete uniformly convex metric space (X, d;W) such that A is con-
vex. Let (T ;S) be an m-contraction pair defined on A ∪ B such that
T (A) ⊆ Sm(B) and T (B) ⊆ Sm(A), and that S is continuous on A
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and relatively anti-Lipschitzian on A∪B. Assume further that T and S
commute on A ∪B. Then there exists p ∈ A such that

d(Sp, Tp) = dist(A,B).

Further, if x1,0 = xm,0 ∈ A and Txm,n = Smxm,n+1 = Sx1,n+1, then
{x1,2n} converges to the coincidence-best proximity point of (T ;S).

Proof. For x1,0 = xm,0 ∈ A define Txm,n = Smxm,n+1 = Sx1,n+1 for
each n  0. We prove that {Smxm,2n} and {Smxm,2n+1} are Cauchy
sequences. At first, we verify that for each ε > 0 there exists N0 ∈ N
such that

d(Smxm,2l, Smxm,2n+1) < dist(A,B) + ε, ∀l > n  N0. (∗)

Assume to the contrary that there exists ε0 > 0 such that for each k  1
there exists lk > nk  k satisfying

d(Smxm,2lk , S
mxm,2nk+1)  dist(A,B) + ε0,

d(Smxm,2lk−2, S
mxm,2nk+1) < dist(A,B) + ε0.

We now have

dist(A,B) + ε0  d(Smxm,2lk , S
mxm,2nk+1)

 d(Smxm,2lk , S
mxm,2lk−2)

+ d(Smxm,2lk−2, S
mxm,2nk+1)

 d(Smxm,2lk , S
mxm,2lk−2) + dist(A,B) + ε0.

Letting k →∞, we obtain

d(Smxm,2lk , S
mxm,2nk+1)→ dist(A,B) + ε0.

Besides, we have

dist(A,B) + ε0  d(Smxm,2lk , S
mxm,2nk+1)

= d(Txm,2lk−1, Txm,2nk)
 αd(Smxm,2lk−1, S

mxm,2nk) + (1− α)dist(A,B)
= αd(Txm,2lk−2, Txm,2nk−1) + (1− α)dist(A,B)
 αd(Smxm,2lk−2, S

mxm,2nk−1) + (1− α)dist(A,B).
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Therefore, letting k →∞ we obtain

dist(A,B) + ε0  α(dist(A,B) + ε0) + (1− α)dist(A,B)
 dist(A,B) + ε0.

This implies that α = 1, which is a contradiction. That is, (∗) holds. Now,
assume {Smxm,2n} is not a Cauchy sequence. Then there exists ε0 > 0
such that for each k  1 there exists lk > nk  k for which

d(Smxm,2lk , S
mxm,nk)  ε0.

Choose 0 < γ < 1 such that ε0
γ > dist(A,B) and choose ε > 0 such that

0 < ε < min

ε0
γ
− dist(A,B),

dist(A,B)α(γ)
1− α(γ)


.

Let N ∈ N be such that

d(Smxm,2nk , S
mxm,2nk+1)  dist(A,B) + ε, ∀nk  N

and

d(Smxm,2lk , S
mxm,2nk+1)  dist(A,B) + ε, ∀lk > nk  N.

Now, by the Uniform convexity of X we deduce that

dist(A,B)  d(Smxm,2nk+1,W(Smxm,2nk , S
mxm,2lk ,

1
2
))

 (dist(A,B) + ε)(1− α(γ))
< dist(A,B),

which is a contradiction. Therefore, {Smxm,2n} is a Cauchy sequence in
A and since for all n  0 we have Smxm,n = Sx1,n, we conclude that
{Sx1,2n} is a Cauchy sequence in A. By the fact that S is continuous on
A and anti-Lipschitzian on A ∪B, we have

d(x1,2l, x1,2n)  c d(Sx1,2l, Sx1,2n)→ 0, l, n→∞,

that is, {x1,2n} is a Cauchy sequence. Since A is complete, there exists
p ∈ A such that x1,2n → p. Now, the result follows from a similar
argument as in the proof of Theorem 2.7. 
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