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Abstract. We shed some light on the Pythagorean relation for oper-
ator established in [7] and we study its relationship with the maximal
numerical range. We then get some informations of maximal numeri-
cal ranges of selfadjoint operators. This allows us to show, contrary to
the closure of the numerical range, the non-continuity in the sens of
Hausdorff of the maximal numerical range.
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1. Introduction

First, let us set some notation and terminology.

Let L be a subset of the complex plane C. As usual, the symbols L and
co(L) stand for the closure and the convex hull of L, respectively. By an
operator we throughout the note understand a bounded linear operator
acting on an infinite dimensional complex Hilbert space H. Let B(H)
denote the algebra of all bounded linear operators acting on H. For
A € B(H), the numerical range of A is defined by the formula

W(A) = (Az,z) :z € H, ||z| =1,

where (.,.) and ||.|| stand, respectively, for the inner product on ‘H and
the norm associated with it. It is a celebrated result due to Toeplitz and
Hausdorff that W (A) is a bounded convex set in the complex plane, see
[5]. It is closed if dim(H) < oo, but it is not always closed if dim(H) = oo.
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For A € B(H), let 0(A), r(A) and w(A) denote the spectrum, the spec-
tral radius and the numerical radius of A respectively and defined as
follows

o(A)={AeC: A— X\l is not invertible},
r(A) =sup{|z|: z€0(A)} and w(A) ={suplz|: z € W(A)}.

It is well known that o(A) is a compact set and co(c(A4)) C W(A).

For more material about the specral radius, the numerical radius and
other information on the basic theory of algebraic numerical range, we
mention here the books [2, 3, 4, 5] as standard sources of references.

It is a basic fact that w(.) is a norm on B(H), which is equivalent to
the C*-norm ||.||. In fact, for any operator A € B(H), the following
inequalities are well known

1
S IAl< w(A) < [|A]).

An operator A € B(H) is called normaloid if w(A) = || A|| or equivalently
r(A) = ||A]|, see [4, Theorem 1.3-2]. Familiar examples of normaloid
operators are normal operators; those A for which A*A = AA*, where
A* is the adjoint of A. There is another set that is close to W (A); that
is the maximal numerical range Wy(A) of A. It it was introduced by
Stampfli [7] and defined by

Wo(A) = {hgl(Awn,xn) txp €H, o] =1, li7£n\|AwnH = || A}

It is shown in [7, Lemma 2] that Wj(A) is nonempty, closed, convex, and
contained in the closure of the numerical range; Wy(A) € W(A)). Then,
wp(A) < w(A), where

wo(A) = sup{|z| : z € Wy(A).

It is also shown in [7, Corollary of Theorem 2| that there exists a
unique scalar ¢4 (called center of mass of A) satisfying the following
(Pythagorean relation for operator)

A= cal®> + A2 < |[(A=ca)+ A|* forall X e C (1)
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and 0 € Wy(A — c4). In particular, taking A = ¢4 in the inequality 1,
we get

1A = call® + leal* < Al (2)
Note also that from the inequality 1, we obtain

|4~ call = inf 14— Al

In Section 2, we show that for any operator A € B(H) we have |ca| <
wy(A) where

wo(A) = inf{|z| : z € Wy(A)}
and we give a geometric interpretation of this result in the case where
ca # 0. From this result, we deduce that

ca € Wo(A) if and only if [|A — ca® + |cal® = || 4] (3)

Using the equivalence 3, we give some examples of maximal numerical
ranges and we establish the non-continuity in the sens of Hausdorff of
the maximal numerical range.

From now on, B(H) denotes the algebra of all bounded linear operators
acting on an infinite dimensional complex Hilbert space H.

2. Phytagorean Relation and Maximal Numer-
ical Range

In this section, we shed some light on the maximal numerical range
Wo(A) of an operator A € B(H). More precisely, we show that wy(A) >
|ca|. This gives, on the one hand, a refinement of the inequality w(A) >
lcal (ca € W(A), see [7]) and on the other hand some information
of the part in D(O,||A]]) (the closed disk of radius || A|| centered at the
origin) where the maximal numerical range Wy (A) is contained. We then
deduced sufficient and necessary conditions to have c4 € Wy(A).

Theorem 2.1. Let A € B(H). Then, wy(A) = |cal.

Proof. By an argument of compactness, there exists a € Wy(A) such
that || = wy(A). Hence, there is a sequence of unit vectors z, € H
satisfying

a= liygn(A:nn,ajn} and linzn |Azn| = [|A]l
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Therefore, we have
[A = call” = [I(A = ca)zall?
= [[Azn|* + |cal® — 2Re(Ca(Azn, )
> || Az + leal® = 2lea| [(Azn, z0))]-

It results that

1A = cal® = AP + leal® — 2|ealwy(4)

= [|AJ* = (wg(A))* + (wp(A) — |eal)*.
Thus, / /
1A = call® + (wo(A))? = | AlI” + (wo(A) — [eal)?.

We see that
IA = call® + (wp(A))* > || A|I? (4)

and from the inequality 2, we get wy(A) > |ca|. O

Geometric interpretation 2.2. Given an operator A € B(H), from
Theorem 2.1, wy(A) > |ca|. In geometric terms, if ¢4 # 0, then Wy(A)
is outside of the open disk D(O, |c4|). Being convex, Wy(A) is contained
in the intersection of a half plane and D(O, ||A||) (gray area; see Figure 1).

a € Wy(A) with
| = wy(A)

B(O, [|1A])

Figure 1. Geometric place of the numerical range
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As cited above, we have ¢y € W (A). However, c4 need not be contained
in Wy(A). Indeed, the following corollary gives sufficient and necessary
conditions to have cq € Wy(A) (see Figure 2).

d=||A—cal
» ca € Wo(A)

B(O. ]|Al)
Figure 2. Phytagorean relation

Corollary 2.3. Let A € B(H). Then, the following are equivalent state-
ments

i) ca € Wy(A),
ii) 1wy (A) = |eal,
iii) [[A — call? + leal® = [|A]*.
Proof. i) = ii). It results from Theortem 2.1.

i) = iii). If wy(A) = |cal, by the inequality (4), ||A —call® + |cal? >
| A||2. We deduce by the inequality (2) that ||A — cal|? + |ca|> = || A%

iii) = i). Assume ||A — cal* + |cal® = ||A]|?. Accoroding to Barraa-
Boumazguour [1, Theorem 3.2]
|A—call?= sup  (|Az|?® —|{Az, x)[?).
€N, [|lz]|=1

Then, there exists a sequence of unit vectors z,, € H such that
14 = call* = tim (|| Azp||* — [{(Azn, z0) ). (5)
We have
1A = call® > [[(A = ca)zn?
= || Az, ||* + |cal? — 2Re(ca(Axy, x,))
> [|Azn|* — [(Azn, 2a)” + lea — (Azn, z0)) 2,
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then from the equality (5), we get
1A —call® = [ A = call® + lea — pl?,

where p = lim(Az,,z,). It results that ¢4 = lim(Az,,z,) and the
equality (5) becomes

14 = call* + |eal® = lim || Az, ],

and using the hypothesis, we conclude that lim || Az, || = ||A||. Conse-
n
quently, ¢4 € Wy(4). O

Remark 2.4. From the previous proof, there is a sequence of unit vectors
x, € H such that

ca = lim(Az,, x,) and ||A— CAH2 = lim(HA:rnH2 — ](Axn,xnﬂ?).

This is another way to see that c4 € W(A) and also it provides another
proof of uniqueness of the scalar ca. Indeed, we can assume, without loss
of generality, that c4 = 0. Suppose, for the sake of contradiction, that
there is some scalar g # 0 satisfies

14 = Aoll = inf |4 —All = |lA]. (6)

Then, there would be a sequence of unit vectors y, € H with
Ao = lm(Ayn, ya) and A = Xol* = lim(|| Aya* — |(Ayn, ya)[?).

We would then have

14 = Aol = tim(|| Ayn|I* — |20
Since Mg # 0, it would follow that

A = Aol < lim || Ay,
< JlAl2.

We obtain the derised contradiction from the equality (6).
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As an application of the obtained results, we determine the maximal
numerical ranges of some operators. We need the following lemma.

Lemma 2.5. Let A € B(H) be normaloid. Then, o(A) N Wy(A) is a
nonempty set. Moreover, for any A € o(A) with |\ = ||Al|, we have
AE O'(A) N W()(A)

Proof. If A is a normaloid operator, then there exists A € o(A) such

that |A\| = ||A]|. Since o(A) C W(A), then there is a sequence of unit
vectors x,, € H such that A = lim(Az,, z,). Using the Cauchy-Schwarz
n

inequality, we have
[} = lim [[Az, || > Tin [(Azy, 20)| = [A] = [| Al

We derive that lim || Az, || = ||A]| and hence A\ € Wy(A). The rest of the
n

lemma is then obvious. [

Example 2.6. Let A be a normal operator acting on the complex Hilbert
space H = C? with 0(A) = {\1, X2} and |A1| < |A2|. Then, since A is
normal and dim(H) < oo, W(A) = co(c(A)) = [A1, A2]; the closed line
segment connecting A; with Ao. On the other hand, c4 is the center of
the smallest disk containing o(A), see [7, Corollary 1 of Theorem 4],

AL+ A AL —A

s 2. We can easily check that |A—cal = | ! 2|
and therefore ||A — ca||? + |cal? = ||A]]? if and only if [A\1]| = |A2|. We
have to discuss two cases.
First case: |\1| = |A\2]|. We have A\, \y € 0(A4) and |\| = |X2] = ||4].
Since A is normaloid, it results by Lemma 2.5 that Aj, Ao € Wy(A). Being
convex, Wy(A) = [A1, A2].
Second case: |\i| < |A2]. We have ||A —ca|? + |cal® # ||A||* and by
Corollary 2.3, ca ¢ Wy(A). But Ay € Wy(A), it follows that Wy(A) C

(ca, A2]. We claim that Wy(A) = A2. For this, suppose there is a scalar y
such taht © € Wo(A)N(ca, A2). We can find a nonzero scalar « satisfying

hence cgq =

Ao —a € (u,A2) and |A —a| <[ —al

Since W(A — a) = [A\ — a, A2 — @], then |Ay — a| = |4 — . On the
other hand, A\oa—a € 0(A—a) and A—« is normaloid, then by Lemma 2.5,
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Ao —a € Wy(A — ). Therefore, Ao — a € Wy(A) N Wy(A — «). This
contradicts [7, Lemma 4], consequently Wy(A) = A2. Then, we have

Wo(A) A Aol Aaf = [Ael,

{A2hs [Ar] <Al
Example 2.7. Let A € B(H) be a selfadjoint operator. If A = A\I with
A is a real number, then W (A) = Wy(A) = {\} and cg = A. Therefore,
let A be non scalar with W(A) = [a, 5] where a and 3 are two real
numbers with a@ < 8. By an argument similar to one in Example 2.6, we

get,

[a,8]; |af =],

Wo(A) = ¢ {a}; ol >3],

{8y lal <Bl.
If ever we have, for example, W(A) = [a,3) with ||A| = 8 (8 must
be positive, otherewise ||A| = |a|), then § € Wy(A). Indeed, since

B € W(A), there is a sequence of unit vectors x,, € H such that 8 =

lim(Axy,, x,) and the Cauchy-Schwarz inequality implies that lim || Az, || =
n n

| All. So, B € Wy(A).

The previous example shows that if A is a non scalar selfadjoint operator

then, cy € Wy(A) if and only if Wy(A) = W(A), and necessarily c4 = 0.

We end this section by showing the non-continuity in the sens of Haus-
dorff of the maximal numerical range. First, let us recall the definition
of Hausdorff distance. We denote by IC(C) the set of all compact subsets
of C.

Definition 2.8. Given K, S € K(C), the Hausdorff distance is defined by
MK, S) = maz(e(K, §), e(S, K))

where
e(K,S) = sup inf |z — y|.
2EK YES

It is proved in [6, Lemme 9] that the map

v: B(H) — K(C), A— W(A)
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is continuous in the sens of Hausdorff. Unfortunately, it is not the case
for the maximal numerical range. Let us take advantage of Example 2.7
to show this.

Proposition 2.9. The map
¢: B(H) — K(C), Ar— Wo(4)

s mon continuous in the sens of Hausdorff.

Proof. According to Exemple 2.7, let A € B(H) be an operator with
1

Wo(A) = [-1,1], then Wp(A) = [-1,1] and set A, = A+ — (n =
n

1
1,2,...), s0 Wy(A,) = {1+ —}. It is clear that lim ||A,, — A|| = 0, then
n n

(A,) converges uniformly to A in B(H). However,

e(Wy(A), Wo(A,)) = sup inf |z —
(Wo(A), Wo(An)) erO(A)yGWO(An)| yl

1
= sup |z—1-——]
ZEEW()(A) n

1
=24 -
n

Since h(p(An), 9(A)) = h(Wo(Ay), Wo(A)) = e(Wo(A), Wy (A,)), it fol-
lows that lim h(p(Ay), p(A)) = 2. Consequently, ¢ is non continuous in
the sens of Hausdorff. [
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