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Abstract. We employ the concept of 2-degree of the vertices and,
more generally, the number of walks between two vertices to introduce
new upper and lower bounds for the spectral radius and the smallest
eigenvalue of a graph. We, further, show how upper and lower bounds
for the spectral radius are better than previous bounds in some cases.
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1. Introduction

Throughout the paper we will assume G = (V (G), E(G)) to be a simple con-
nected graph where the vertex set V (G) = {v1, . . . , vn} and where |E(G)| = m.
For vi ∈ V (G), the degree of vi and the average of the degrees of the vertices
adjacent to vi are denoted by di and mi, respectively. The 2-degree of a ver-
tex vi is defined to be the sum of the degrees of the vertices adjacent to vi,
i.e. dimi. Let δ = δ(G) and ∆ = ∆(G) be the minimum and the maximum
degree of the vertices of G, respectively. A k-walk of G is a list vi1vi2 · · · vik of
the vertices of G such that the vertex vij is adjacent to vij−1 , 2  j  k. We
define wk(i) to be the number of k-walks starting with vi ∈ V (G); As well, for
every pair of vertices vi, vj ∈ V (G), we write wk(i, j) for the number of k-walks
starting with vi and ending with vj .
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54 M. KARGAR AND T. SISTANI

The adjacency matrix of a graph G is denoted by A = A(G). The eigenvalues
of a graph are the eigenvalues of its adjacency matrix. Note that as A(G) is
a real symmetric matrix, all the eigenvalues of G are real. The spectral radius
(i.e. the largest eigenvalue) and the smallest eigenvalue of a real symmetric
matrix X are denoted by λ(X) = λ and ρ(X) = ρ, respectively. We use similar
notation λ(G) = λ and ρ(G) = ρ for a given graph G. Approximating the
parameters λ(G) and ρ(G) is an important problem and has attracted much
attention recently; see for example [11, 12, 15]. Below, we state some known
upper bounds for the parameter λ(G).

The first four upper bounds on the spectral radius of a graph are in terms of δ
and ∆ and number of the vertices and edges:

See [2, 3]: λ 

2m− δ(n− 1) + ∆(δ − 1) (1)

See [8]: λ 
√
2m− n− δ + 2 (2)

See [14]: λ 

2m− n+ 1− (δ − 1)(n− 1−∆) (3)

See [6, 10, 16]: λ  1
2


δ − 1 +


(δ + 1)2 + 4(2m− δn)


(4)

Furthermore, using the degree and the 2-degree of the vertices and average
degrees of the vertices adjacent to vi ∈ V (G), some other upper bounds have
been introduced:

See [4]: λ  max
vi∈V (G)

{mi} (5)

See [4]: λ  max
vi∈V (G)


dimi (6)

See [1]: λ  max
vivj∈E(G)


didj (7)

See [3]: λ  max
vivj∈E(G)

√
mimj (8)

In addition, Feng et al. [5] presented the following upper bounds for the spectral
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radius:

λ  max
vi∈V (G)


d2i + dimi

2
. (9)

λ  max
vivj∈E(G)


di(di +mi) + dj(dj +mj)

2
. (10)

λ  max
vi∈V (G)

di +
√
dimi

2
(11)

λ  max
vivj∈E(G)

di + dj +

(di − dj)2 + 4mimj

4
. (12)

It has been shown [3] that the bound (8) is always better than the bound (5).
But some of the bounds (1)-(12) are incomparable. In this paper, we present
some new upper and lower bounds for the spectral radius of a graph in terms
of the 2-degrees and k-walks. We, further, obtain some bounds for the smallest
eigenvalues of graphs in terms of k-walks. We will, finally, present some exam-
ples of graphs to compare our new bounds for the spectral radius with some of
the bounds mentioned above as well as a bound due to Kummar [9].

We, first, recall the following fundamental result due to Brauer [7] which will
be used in the paper.

Theorem 1.1. Let B = [bij ] be an n × n matrix with entries in the complex
field C. All the eigenvalues of B are located in the union of the n(n − 1)/2
ovals of cassini

n

i,j=1
i =j

{z ∈ C : |z − bii| |z − bjj |  Ri(B)Rj(B)}

where Ri(B) =
n

j=1
j =i

|bij |.

The following fact [13] will, also, be useful.

Lemma 1.2. For every graph G, δ(G)  λ  ∆(G), where λ is the largest
eigenvalue of G.
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2. Main Results

In this section we present the main results of the paper. We start with obtaining
a new upper bound for the spectral radius of a graph G using the 2-degrees of
their vertices.

Theorem 2.1. For any graph G with n  2 vertices, we have

λ2  max
1i,jn

i =j

1
2


di + dj +


(di − dj)2 + 4 (dimi − di)(djmj − dj)


. (13)

The equality holds if G is a regular graph.

Proof. Let A = [aij ] be the adjacency matrix of G. We apply Theorem ??
for the matrix B = [bij ] = A2. Since bii = di and Ri(B) = dimi − di, for all
i = 1, . . . , n, we conclude that λ(B) = λ2(A) = λ2 is located in the union of
n(n−1)

2 ovals of cassini

n

i,j=1
i =j

{z ∈ C : |z − bii| |z − bjj |  Ri(B)Rj(B)}

=
n

i,j=1
i =j

{z ∈ C : |(z − di)(z − dj)|  (dimi − di)(djmj − dj)}

=
n

i,j=1
i =j

{z ∈ R ∪ (C− R) : |(z − di)(z − dj)|  (dimi − di)(djmj − dj)} .

Since A is a real symmetric matrix and, thus, λ is a real eigenvalue, this implies
that λ2 is located in the region
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n

i,j=1
i =j

{z ∈ R : |(z − di)(z − dj)|  (dimi − di)(djmj − dj)}

=
n

i,j=1
i =j

{z ∈ R : −(dimi − di)(djmj − dj)

 (z − di)(z − dj)  (dimi − di)(djmj − dj)}

⊆
n

i,j=1
i =j

{z ∈ R : (z − di)(z − dj)  (dimi − di)(djmj − dj)}

⊆
n

i,j=1
i =j


z ∈ R : z 

di + dj +

(di − dj)2 + 4(dimi − di)(djmj − dj)

2


.

from which the desired bound is achieved.

If G is a regular graph, then di = ∆ and dimi = ∆2, for all vi ∈ V (G). Thus

max
1i,jn

i =j

di + dj +

(di − dj)2 + 4(dimi − di)(djmj − dj)

2
= ∆2,

which, noting Lemma 1.2, proves the second part of the theorem. 
Now, using a similar approach as in Theorem 2.1, we present a new upper
bounds for the spectral radius a graph G in terms of the number of walks. In
what follows we will make use of the notation

Wij = wm+1(i, j) and Wi =
wm+p(i)
wp(i)

,

for each i, j = 1, . . . , n and every integers p  1, m  1.
Theorem 2.2 For any graph G with n  2 vertices and every integer m  1,
we have

λm  max
1i,jn

i =j

1
2


Wii +Wjj +


(Wii −Wjj)2 + 4(Wi −Wii)(Wj −Wjj)


.

The equality holds if G is the complete graph Kn.
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Proof. Let A = [aij ] be the adjacency matrix of G and D be the diagonal
matrix with diagonal (wp(1), ..., wp(n)). We apply Theorem ?? for the matrix
B = [bij ] = D−1AmD. Since bii =Wii and

Ri(B) =
n

j=1

Wij
wp(j)
wp(i)

−Wii =
wm+p(i)
wp(i)

−Wii =Wi −Wii,

for all i = 1, . . . , n, we conclude that λ(B) = λm(A) = λm is located in the
union of n(n−1)

2 ovals of cassini

n

i,j=1
i =j

{z ∈ C : |z − bii| |z − bjj |  Ri(B)Rj(B)}

=
n

i,j=1
i =j

{z ∈ C : | (z −Wii)(z −Wjj) |  (Wi −Wii)(Wj −Wjj)}.

Since λm is a real number, this implies that λm is located in the region

n

i,j=1
i =j

{z ∈ R : |(z −Wii)(z −Wjj)|  (Wi −Wii)(Wj −Wjj)}

=
n

i,j=1
i =j

{z ∈ R : −(Wi −Wii)(Wj −Wjj)

 (z −Wii)(z −Wjj)  (Wi −Wii)(Wj −Wjj)}

⊆
n

i,j=1
i =j

{z ∈ R : (z −Wii)(z −Wjj)  (Wi −Wii)(Wj −Wjj)}

⊆
n

i,j=1
i =j


z ∈ R : z 

Wii +Wjj +

(Wii −Wjj)2 + 4(Wi −Wii)(Wj −Wjj)

2


,

from which the desired bound is achieved.

Let G = Kn. Then Wii =Wjj and Wi = (n− 1)m, for all vi ∈ V (G). Thus

max
1i,jn

i =j

1
2


Wii +Wjj +


(Wii −Wjj)2 + 4(Wi −Wii)(Wj −Wjj)


= (n−1)m,
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which, noting Lemma 1.2, proves the second part of the theorem. 
Note that Theorem 2.1 is a spacial case of Theorem 2.2 where m = 2 and p = 1.
Also, letting m = 1 and p = 1, 2, 3 in Theorem 2.2, we obtain the following
known inequalities, respectively:

λ  max
1i,jn

i =j


didj ,

λ  max
1i,jn

i =j

√
mimj ,

λ  max
1i,jn

i =j


w4(i)
dimi

w4(j)
djmj

.

Furthermore, we obtain new upper bounds for the spectral radius of a graph
by setting m = 2 and p = 2, 3, 4, 5 in Theorem 2.2:

λ2  max
1i,jn

i =j

1
2


di + dj +



(di − dj)2 + 4 (
w4(i)
di

− di)(
w4(j)
dj

− dj)

, (14)

λ2  max
1i,jn

i =j

1
2


di + dj +



(di − dj)2 + 4 (
w5(i)
dimi

− di)(
w5(j)
djmj

− dj)

, (15)

λ2  max
1i,jn

i =j

1
2


di + dj +



(di − dj)2 + 4 (
w6(i)
w4(i)

− di)(
w6(j)
w4(j)

− dj)

, (16)

λ2  max
1i,jn

i =j

1
2


di + dj +



(di − dj)2 + 4 (
w7(i)
w5(i)

− di)(
w7(j)
w5(j)

− dj)

. (17)

Corollary 2.3. For any graph G with n  2 vertices and every integer p  1,
we have

λ2  max
1i,jn

i =j

1
2


di + dj +



(di − dj)2 + 4 (
wp+2(i)
wp(i)

− di)(
wp+2(j)
wp(j)

− dj)

.

The equality holds if G is a regular graph.

Proof. The bound follows from Theorem 2.2 by letting m = 2. If G is a regular

graph, then di = ∆ and
w2+p(i)
wp(i)

= ∆2, for all vi ∈ V (G). Thus
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max
1i,jn

i =j

di + dj +


(di − dj)2 + 4(

w2+p(i)
wp(i)

− di)(
w2+p(j)
wp(j)

− dj)

2
= ∆2,

which, noting Lemma 1.2, proves the second part of the theorem. 
Furthermore, noting that if G is a bipartite graph then Wii = wm+1(i, i) = 0,
for each i = 1, ..., n, and for every odd integer m  1, we obtain the following
corollary of Theorem 2.2.

Corollary 2.4. For any bipartite graph G with n  2 vertices and every odd
integer m  1, we have

λm  max
1i,jn

i =j


WiWj .

Also, taking m = 1 and p = 1, in Corollary 2.4, we obtain

λ  max
1i,jn

i =j


didj .

We now provide an example of some graphs for which some of our bounds are
better than some of the bounds (1)-(12).

Example 2.5. Consider the graphs G, H and K in Figure 1. The value of each
of the upper bounds (1)-(12) as well as our bounds are listed in Table 1. We
observe that our bounds are the best among all known upper bounds for the
graphs G and K, and that bound (4) is the best for the graph H. Thus, these
upper bounds are not comparable.

Assuming α = (α1, . . . , αn) is a sequence of positive numbers, we define

Wα
i =

n

j=1

Wij
αj
αi
, i = 1, . . . , n.

One can generalize Theorem 2.2 and provide a stronger bound in terms of Wα
i

as follows. The proof is similar to that of Theorem 2.2, where wp(i) is replaced
by αi.

Theorem 2.6. Let G be a graph with n  2. For every integer m  1 and
every sequence α = (α1, . . . , αn) of positive numbers, we have

λm  max
1i,jn

i =j

1
2


Wii +Wjj +


(Wii −Wjj)2 + 4(Wi

α −Wii)(Wj
α −Wjj)


.
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Now we obtain a lower bound for the spectral radius of a graph in terms of the
number of its walks.

Theorem 2.7. For any graph G with n  2 vertices and every integer m  1,
we have

λm  max
1j<in

1
2


Wii +Wjj +


(Wii −Wjj)2 + 4W 2

ij


. (18)

Proof. The largest eigenvalue of Am is greater than or equal to the largest
eigenvalue of any principal submatrix of Am. Any principal submarix of order
two of Am is of the form 

Wii Wij

Wji Wjj


.

The m-th root of its largest eigenvalue is equal to




Wii +Wij +


(Wii −Wjj)2 + 4W 2

ij

2





1
m

,

from which the inequality follows. 
Taking m = 2 in Theorem 2.7, we obtain the following inequality which has
been proved by Kummar [9].

λ2  max
1j<in

di + dj +

(di − dj)2 + 4w2

3(i, j)
2

.

Figure 1. The graphs G , H , K
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Proof. The largest eigenvalue of Am is greater than or equal to the largest
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2





1
m

,

from which the inequality follows. 
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λ2 ≥ max
1≤j<i≤n

di + dj +


(di − dj)2 + 4w2
3(i, j)

2
.

G H K

Figure 1: The graphs G , H , K
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Table 1: Comparison of the upper bounds

Example 2.8. Consider the graph G in Figure 2. The numerical values of the
lower bound (18), for some values ofm for the graph G are given in Table 2. We
observe that the new bound (18), when m = 8, is better than when m = 2,
which is the bound in [9].

Figure 2. Graph G in Example 2.8.

New upper bounds on the spectral radius of graphs 11

inequality graph G graph H graph K

(1) 3 2/8284 3

(2) 3 2/6457 3

(3) 3 2/8284 3

(4) 3 2/5615 3

(5) 3 3 4

(6) 3 2/8284 2/45

(7) 3 2/8284 2/83

(8) 3 3 2/45

(9) 3 3/3166 3/24

(10) 3 2/9154 2/78

(11) 3 3/4142 3/12

(12) 3 2/8228 2/60

(13) 3 2/6689 2/289

(14) 2/886751 2/6457 2/236

(15) 2/87228 2/5964 2/184

(16) 2/8675 3/5911 2/190

(17) 2/8656 2/5739 2/161

real value 2/8558 2/5616 2/119
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We, next, turn our attention to the smallest eigenvalue of graphs and calculate,
in the next theorems, several lower bounds for the smallest eigenvalue of a
graph. We use a similar approach as in the proof of Theorem 2.2 to prove the
following theorems.

Table 2: Table in Example 2.8.

Theorem 2.9. For any graph G with n  2 vertices and every odd integer
m  1, we have

ρm  min
1i,jn

i =j

1
2


Wii +Wjj −


(Wii −Wjj)2 + 4(Wi −Wii)(Wj −Wjj)


.

Proof. Let A = [aij ] be the adjacency matrix of G and D be the diagonal
matrix with diagonal (wp(1), ..., wp(n)). We apply Theorem ?? for the matrix
B = [bij ] = D−1AmD. Since bii =Wii and

Ri(B) =
n

j=1

Wij
wp(j)
wp(i)

−Wii =
wm+p(i)
wp(i)

−Wii =Wi −Wii,

for all i = 1, . . . , n, we conclude that ρ(B) = ρm(A) = ρm is located in the
union of n(n−1)

2 ovals of cassini

n

i,j=1
i =j

{z ∈ C : | (z −Wii)(z −Wjj) |  (Wi −Wii)(Wj −Wjj)}.

Since ρm is a real eigenvalue, this implies that ρm is located in the region

n

i,j=1
i =j

{z ∈ R : (z −Wii)(z −Wjj)  (Wi −Wii)(Wj −Wjj)}

⊆
n

i,j=1
i =j


z ∈ R : z 

Wii +Wjj −

(Wii −Wjj)2 + 4(Wi −Wii)(Wj −Wjj)

2


,
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m 2 3 4 5 6 7 8

inequality (18) 2.13 1.91 2.25 2.10 2.30 2.18 2.32 max=2.32

Table 2: Table in Example 2.8

of a graph. We use a similar approach as in the proof of Theorem 2.2 to prove
the following theorems.

Theorem 2.9. For any graph G with n ≥ 2 vertices and every odd integer
m ≥ 1, we have

ρm ≥ min
1≤i,j≤n

i =j

1

2


Wii +Wjj −


(Wii −Wjj)2 + 4(Wi −Wii)(Wj −Wjj)


.

Proof. Let A = [aij ] be the adjacency matrix of G and D be the diagonal
matrix with diagonal (wp(1), ..., wp(n)). We apply Theorem 1.1 for the matrix
B = [bij ] = D−1AmD. Since bii = Wii and

Ri(B) =
n

j=1

Wij
wp(j)

wp(i)
−Wii =

wm+p(i)

wp(i)
−Wii = Wi −Wii,

for all i = 1, . . . , n, we conclude that ρ(B) = ρm(A) = ρm is located in the

union of n(n−1)
2 ovals of cassini

n

i,j=1

i =j

{z ∈ C : | (z −Wii)(z −Wjj) | ≤ (Wi −Wii)(Wj −Wjj)}.

Since ρm is a real eigenvalue, this implies that ρm is located in the region

n

i,j=1

i =j

{z ∈ R : (z −Wii)(z −Wjj) ≤ (Wi −Wii)(Wj −Wjj)}

⊆
n

i,j=1

i =j


z ∈ R : z ≥

Wii +Wjj −


(Wii −Wjj)2 + 4(Wi −Wii)(Wj −Wjj)

2


,
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from which the desired bound is achieved. 
One can generalize Theorem 2.9 and provide a stronger bound in terms of Wα

i

as follows. The proof is similar to that of Theorem 2.9, where wp(i) is replaced
by αi.

Theorem 2.10. Let G be a graph with n  2. For every odd integer m  1
and every sequence α = (α1, . . . , αn) of positive numbers, we have

ρm  min
1i,jn

i =j

1
2


Wii +Wjj −


(Wii −Wjj)2 + 4(Wi

α −Wii)(Wj
α −Wjj)


.

We conclude the paper with some upper bounds for ρ = ρ(G) in terms of the
number of walks of G.

Theorem 2.11. For any graph G with n  2 vertices and every odd integer
m  1, we have

ρm  min
1j<in

1
2


Wii +Wjj −


(Wii −Wjj)2 + 4W 2

ij


.

Proof. The proof is similar to that of Theorem 2.7; note that the smallest
eigenvalue of Am is less than or equal to the smallest eigenvalue of any 2 × 2
principal submatrix of Am. 
The following is an immediate consequence of Theorem 2.11.

Corollary 2.12. For any bipartite graph G with n  2 vertices and every odd
integer m  1, we have

ρm  min
1j<in

Wij .
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