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Abstract. We employ the concept of 2-degree of the vertices and,
more generally, the number of walks between two vertices to introduce
new upper and lower bounds for the spectral radius and the smallest
eigenvalue of a graph. We, further, show how upper and lower bounds
for the spectral radius are better than previous bounds in some cases.
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1. Introduction

Throughout the paper we will assume G = (V(G), E(G)) to be a simple con-
nected graph where the vertex set V/(G) = {v1,...,v,} and where |E(G)| = m.
For v; € V(G), the degree of v; and the average of the degrees of the vertices
adjacent to v; are denoted by d; and m;, respectively. The 2-degree of a ver-
tex v; is defined to be the sum of the degrees of the vertices adjacent to v;,
ie. dim;. Let 6 = §6(G) and A = A(G) be the minimum and the maximum
degree of the vertices of G, respectively. A k-walk of G is a list v, v;, - - - v;, of
the vertices of GG such that the vertex v;; is adjacent to v;;,_, 2 < j < k. We
define wy, (i) to be the number of k-walks starting with v; € V(G); As well, for
every pair of vertices v;, v; € V(G), we write wy(, j) for the number of k-walks
starting with v; and ending with v;.
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The adjacency matrix of a graph G is denoted by A = A(G). The eigenvalues
of a graph are the eigenvalues of its adjacency matrix. Note that as A(G) is
a real symmetric matrix, all the eigenvalues of G are real. The spectral radius
(i.e. the largest eigenvalue) and the smallest eigenvalue of a real symmetric
matrix X are denoted by A\(X) = A and p(X) = p, respectively. We use similar
notation A(G) = A\ and p(G) = p for a given graph G. Approximating the
parameters A\(G) and p(G) is an important problem and has attracted much
attention recently; see for example [11, 12, 15]. Below, we state some known
upper bounds for the parameter A\(G).

The first four upper bounds on the spectral radius of a graph are in terms of §
and A and number of the vertices and edges:

See [2, 3]: A<V2m—=d(n—1)+AE-1) (1)

See [8]: A<V2m—n—0+2 (2)

See [14]: A<V2m—n+1—-(-1)n-1-4) (3

See [6, 10, 16]: A< [5 1+ + D2 +42m—on)|  (4)

1
2

Furthermore, using the degree and the 2-degree of the vertices and average
degrees of the vertices adjacent to v; € V(G), some other upper bounds have
been introduced:

See [4]: A< U‘IGD‘?(XG){mi} (5)
See [4]: A< m‘?,(%) d;m; (6)
v €
1]: A< d;d;
See [1] e 5 (7)
See [3]: A< rga}g;c(@ mm; (8)
ViV

In addition, Feng et al. [5] presented the following upper bounds for the spectral
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radius:

[d? + d;m,;
A< e Bt 9

\/di(di + ml) + dj(dj + mj)

A< . 10

vivi-réag'((G) 2 ( )
d; +vdim;

A< max G Vdimi (11)

v, €V(G) 2
di +d; + /(s — ;)% 1 dmm;

A< max i+ V( s) +mm]. (12)

UiUJ'EE(G) 4

It has been shown [3] that the bound (8) is always better than the bound (5).
But some of the bounds (1)-(12) are incomparable. In this paper, we present
some new upper and lower bounds for the spectral radius of a graph in terms
of the 2-degrees and k-walks. We, further, obtain some bounds for the smallest
eigenvalues of graphs in terms of k-walks. We will, finally, present some exam-
ples of graphs to compare our new bounds for the spectral radius with some of
the bounds mentioned above as well as a bound due to Kummar [9].

We, first, recall the following fundamental result due to Brauer [7] which will
be used in the paper.

Theorem 1.1. Let B = [b;;] be an n x n matriz with entries in the complex
field C. All the eigenvalues of B are located in the union of the n(n — 1)/2
ovals of cassini

U {2 €C : |2 = bl |2 = bj;| < R(B)R;(B)}
where R;(B) = Y |b;].

iz
The following fact [13] will, also, be useful.

Lemma 1.2. For every graph G, §(G) < A < A(G), where X is the largest
eigenvalue of G.
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2. Main Results

In this section we present the main results of the paper. We start with obtaining
a new upper bound for the spectral radius of a graph G using the 2-degrees of
their vertices.

Theorem 2.1. For any graph G with n > 2 vertices, we have

1
A2 < 12}?2(” 5 |:dz + dj + \/(dl — dj)Q +4 (dimi — dl)(djmj — dj) . (13)
i#£]

The equality holds if G is a regular graph.

Proof. Let A = [a;;] be the adjacency matrix of G. We apply Theorem 7?7
for the matrix B = [b;;] = A2, Since b;; = d; and R;(B) = dym; — d;, for all
i =1,...,n, we conclude that A\(B) = A\?(A) = )2 is located in the union of

—1 .
% ovals of cassini

U {z€C : |z =by| |z —bj;| < Ri(B)R;(B)}

i#]

= J{z€C: [z —d)(z—dj)| < (dimi — di)(dym; — d))}

= |J 2 €RUC—R) : [(z—di)(z— dy)| < (dimi — i) (dym; — d)}

i#j

Since A is a real symmetric matrix and, thus, A is a real eigenvalue, this implies
that A2 is located in the region
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U {zeR : [(z—di)(z = d))| < (dim; — di)(djm; — d;)}

i#j

= CJ {zeR + —(dim; — d;)(djm; — d;)
< (2 —di)(z — dj) < (dymy — d;)(dymy —dj)}

U zeR: (z—di)(z = dy) < (dimy — di)(dym; — d;)}

1#]

CJ {Z €R : 2 < di+dj + \/(dl —dj)2 +24(dlml —di)(djmj —d]')}.

N

N

i,j=1

i#£]
from which the desired bound is achieved.

If G is a regular graph, then d; = A and d;m; = A2, for all v; € V(G). Thus

max di+dj + \/(dz 7d])2+4(d2m17d1)(d]m3 7dj) :A27
1<i,5<n 2
1#]

which, noting Lemma 1.2, proves the second part of the theorem. [

Now, using a similar approach as in Theorem 2.1, we present a new upper
bounds for the spectral radius a graph G in terms of the number of walks. In
what follows we will make use of the notation

. Win4p (%)
Wij = Wimy1(i,j) and W, = %,
for each 7,j = 1,...,n and every integers p > 1, m > 1.

Theorem 2.2 For any graph G with n > 2 vertices and every integer m > 1,
we have

1
AT S max o [Wn‘ + Wij + \/(Wu' = Wjj)? + A(Wi = Wi ) (W — W)
\i;zjgn

The equality holds if G is the complete graph K,.



58 M. KARGAR AND T. SISTANI

Proof. Let A = [a;;] be the adjacency matrix of G and D be the diagonal
matrix with diagonal (wp(1), ..., wp(n)). We apply Theorem ?? for the matrix
B= [b”] = D"1A™D. Since b;; = W;; and

ZW wpld) _ :wLP(Z‘),W“:W,fW”
'Lj 7; ll wp(i) K22 K3 (23]

for all ¢ = 1,...,n, we conclude that A(B) = A™(A) = A™ is located in the
union of n(n2_1) ovals of cassini

n

U {2 €C : 2= bal |2 - by| < Ri(B)R;(B)}

%
= JGeC: (2= Wa)(z = Wy)) | < (W = Wai)(W; — W)}
f

Since A" is a real number, this implies that A™ is located in the region

n

U {zeR : |(z = Wi)(z = Wij)| < (Wi = W) (W; — Wyj5)}

1#]

= O {zeR « —(W; = W;;))(W; — Wj;)
< (Z — Wu)(z - Wjj) < (Wz - WZZ)(WJ - Wjj)}

C U {zeR : (2= Wy)(z —W;;) < (W, = Wyu)(W; — W,;)}

<) {ZeR < Wi+ Wy + /W, Wjj>22+4<wi—wﬁ><wj—Wj»}’
LZ¥]1

from which the desired bound is achieved.

Let G = K,,. Then W;; = Wj; and W; = (n — 1)™, for all v; € V(G). Thus

1<i,j<n

1
max o {Wn‘ + Wi + \/(Wz‘i = Wii)? +4(Wi = Wig) (W — Wjj)] =(n-1)"
i
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which, noting Lemma 1.2, proves the second part of the theorem. [

Note that Theorem 2.1 is a spacial case of Theorem 2.2 where m = 2 and p = 1.
Also, letting m = 1 and p = 1,2,3 in Theorem 2.2, we obtain the following
known inequalities, respectively:

A < max \/didj,

1<i,j<n

i#£]
A< max /m;m;
\1<;,j§n illly,
i#]
wy(4) wa(J
A < max (1) waf )
1<i,j<n dlmt djmj
i#£]

Furthermore, we obtain new upper bounds for the spectral radius of a graph
by setting m = 2 and p = 2,3,4,5 in Theorem 2.2:

1< g<n d; d;
i#£] L i

22 < max } dl+d]+\/(d7d])2+4(w4(l) 7dl)(”UJ4(J) fdj) , (14)

22 < max } dz+d] + \/(dz _dj)2+4(w5(i) _dl)(w5(]) _dj) , (15)

1<ij<n dzml djmj
i#£] L J

)\2< max 1 d1+d]+\/(dz—dj)2+4(w657l)_dz)(wG(])_dJ) ) (16)

1<i'i7,éjj§n I Wy ’L) w4(]) ]
[ wr (i) wi(j) ]
2 < ) , 4242 g —d;))|. (1
A 1?;?2(71 d; +d; + \/(dz d;)? + (ws(i) dl)(w5(j) dj) (17)
] L -

Corollary 2.3. For any graph G with n > 2 vertices and every integer p > 1,
we have

1 wp+2(1) wp+2(7)
A2 < = |d; +d, di —dj)? + 4 (2220 g (=22 g,
lgll;)én +a;+ \/( J) + ( wp(z) )( wp(]) J)
7]

The equality holds if G is a regular graph.
Proof. The bound follows from Theorem 2.2 by letting m = 2. If G is a regular
graph, then d; = A and w24p(0) _ A2 o all vy € V(G). Thus

wy(4)
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di+ d; + \/ (s — dyy2 + 4zl gy eenb) gy

wp(4) wp(j)
max d d =A%,
1<i,j<n 2
i#]

which, noting Lemma 1.2, proves the second part of the theorem. [

Furthermore, noting that if G is a bipartite graph then Wy; = wi,41(4,4) = 0,
for each © = 1,...,n, and for every odd integer m > 1, we obtain the following
corollary of Theorem 2.2.

Corollary 2.4. For any bipartite graph G with n > 2 vertices and every odd
integer m > 1, we have
A" < max WZW]
1<i,5<n
1#]

Also, taking m =1 and p = 1, in Corollary 2.4, we obtain

A < max \/m

1<i,j<n
1#]
We now provide an example of some graphs for which some of our bounds are
better than some of the bounds (1)-(12).

Example 2.5. Consider the graphs G, H and K in Figure 1. The value of each
of the upper bounds (1)-(12) as well as our bounds are listed in Table 1. We
observe that our bounds are the best among all known upper bounds for the
graphs G and K, and that bound (4) is the best for the graph H. Thus, these
upper bounds are not comparable.

Assuming a = (o, ..., q,) is a sequence of positive numbers, we define
" @
Wia: E Wijfj, z':l,...,n.
; (67
j=1

One can generalize Theorem 2.2 and provide a stronger bound in terms of W
as follows. The proof is similar to that of Theorem 2.2, where w,(%) is replaced
by «;.

Theorem 2.6. Let G be a graph with n > 2. For every integer m > 1 and
every sequence o = (aq,...,ay) of positive numbers, we have

1 (03 (0%
)\m g linai( 5 |:W“ + Wjj + \/(W“ — Wjj)Q + 4(Wz - Wz)(WJ — Wjj)
\iszj\n
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Now we obtain a lower bound for the spectral radius of a graph in terms of the
number of its walks.

Theorem 2.7. For any graph G with n > 2 vertices and every integer m > 1,
we have

1
A" > max -
1<j<i<n 2

(Wi + Wi+ [ (Wi = W2+ 4W2] . (1)

Proof. The largest eigenvalue of A™ is greater than or equal to the largest
eigenvalue of any principal submatrix of A™. Any principal submarix of order

two of A™ is of the form
( Wi Wi, )
Wi Wy )

The m-th root of its largest eigenvalue is equal to

1
m

Wii + Wi; + \/(W” — Wijj)? + AW
2 )

from which the inequality follows. [

Taking m = 2 in Theorem 2.7, we obtain the following inequality which has
been proved by Kummar [9].

2o e %G EV(d = dg) + 4w g)
7 gj<igkn 2 '

>

G H K

Figure 1. The graphs G , H , K
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Table 1: Comparison of the upper bounds

inequality graph G graph H graph K

®) 3 2/8284 3
2) 3 2/6457 3
(3) 3 2/8284 3
(4) 3 2/5615 3
(5) 3 3 4
(6) 3 2/8284  2/45
(7) 3 2/8284  2/83
(8) 3 3 2/45
(9) 3 3/3166  3/24
(10 3 2/91564  2/78
11 3 3/4142  3/12
12 3 2/8228  2/60
13 3 2/6680  2/289

2/886751 2/6457  2/236
2/87228  2/5964  2/184
2/8675  3/5911  2/190
2/8656  2/5739  2/161
value  2/8558  2/5616  2/119

—_
ot

|||~~~
[a— —_
=2 H~

~— | — | — | — | — | — |~ | —

[
\]

—_

rea

Example 2.8. Consider the graph G in Figure 2. The numerical values of the
lower bound (18), for some values of m for the graph G are given in Table 2. We
observe that the new bound (18), when m = 8, is better than when m = 2,
which is the bound in [9].

Figure 2. Graph G in Example 2.8.
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We, next, turn our attention to the smallest eigenvalue of graphs and calculate,
in the next theorems, several lower bounds for the smallest eigenvalue of a
graph. We use a similar approach as in the proof of Theorem 2.2 to prove the
following theorems.

Table 2: Table in Example 2.8.

m 2 3 4 5 6 7T 8
inequality (18) { 213 1.91 225 210 230 218 232 | max=2.32

Theorem 2.9. For any graph G with n > 2 vertices and every odd integer
m > 1, we have

1
2 a2, 2 [W“ + Wi = \/(W“ — Wj)? +4(W; — W) (W — W;)
£

Proof. Let A = [a;;] be the adjacency matrix of G and D be the diagonal
matrix with diagonal (w,(1),...,wp(n)). We apply Theorem ?? for the matrix
B = [b”] = D~1A™D. Since b;; = W, and

wp(j)
wp (1)

for all i = 1,...,n, we conclude that p(B) = p™(A) = p™ is located in the
1

union of "(%

*Wii:wLI{(i)*Wii:Wi*VVii;
wy (1)

Ri(B) =Y W,
j=1

ovals of cassini

U {zeC : |(z=Wy)(z—=W;;)| < (W; = W) (W; = W;;)}.

1#]

Since p™ is a real eigenvalue, this implies that p™ is located in the region

U {zeR (2= Wi)(z — W) < (W — Wi )(W; — Wy}

i%
c Lnj {z ER : z> Wi + W5 = V(Wi — Wjj); +4(W; — Wy )(W; — Wy5)

i,j=1

i#]

2
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from which the desired bound is achieved. O

One can generalize Theorem 2.9 and provide a stronger bound in terms of W2
as follows. The proof is similar to that of Theorem 2.9, where w, (%) is replaced
by ;.

Theorem 2.10. Let G be a graph with n > 2. For every odd integer m > 1

and every sequence « = (..., ay) of positive numbers, we have
1
prz min o {W” +Wis = \/(Wn' — W) + AW — Wi ) (W5 — W)
VAL
1#]

We conclude the paper with some upper bounds for p = p(G) in terms of the
number of walks of G.

Theorem 2.11. For any graph G with n > 2 wvertices and every odd integer
m > 1, we have

m

. 1
p min -

~
1<j<ign 2

[Wii + Wy — \/(Wn - W;;)? + 4Wi2jJ .

Proof. The proof is similar to that of Theorem 2.7; note that the smallest
eigenvalue of A™ is less than or equal to the smallest eigenvalue of any 2 x 2
principal submatrix of A™. O

The following is an immediate consequence of Theorem 2.11.

Corollary 2.12. For any bipartite graph G with n > 2 vertices and every odd
integer m > 1, we have
< min Wi,
P 1<j<isn 2
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