New Upper Bounds on the Spectral Radius of Graphs

M. Kargar
Kerman Branch, Islamic Azad university
T. Sistani ${ }^{*}$
Kerman Branch, Islamic Azad university

Abstract

We employ the concept of 2-degree of the vertices and, more generally, the number of walks between two vertices to introduce new upper and lower bounds for the spectral radius and the smallest eigenvalue of a graph. We, further, show how upper and lower bounds for the spectral radius are better than previous bounds in some cases.

AMS Subject Classification: 05C50
Keywords and Phrases: Eigenvalue, spectral radius, walk, 2-degree

1. Introduction

Throughout the paper we will assume $G=(V(G), E(G))$ to be a simple connected graph where the vertex set $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and where $|E(G)|=m$. For $v_{i} \in V(G)$, the degree of v_{i} and the average of the degrees of the vertices adjacent to v_{i} are denoted by d_{i} and m_{i}, respectively. The 2 -degree of a vertex v_{i} is defined to be the sum of the degrees of the vertices adjacent to v_{i}, i.e. $d_{i} m_{i}$. Let $\delta=\delta(G)$ and $\Delta=\Delta(G)$ be the minimum and the maximum degree of the vertices of G, respectively. A k-walk of G is a list $v_{i_{1}} v_{i_{2}} \cdots v_{i_{k}}$ of the vertices of G such that the vertex $v_{i_{j}}$ is adjacent to $v_{i_{j-1}}, 2 \leqslant j \leqslant k$. We define $w_{k}(i)$ to be the number of k-walks starting with $v_{i} \in V(G)$; As well, for every pair of vertices $v_{i}, v_{j} \in V(G)$, we write $w_{k}(i, j)$ for the number of k-walks starting with v_{i} and ending with v_{j}.

[^0]The adjacency matrix of a graph G is denoted by $A=A(G)$. The eigenvalues of a graph are the eigenvalues of its adjacency matrix. Note that as $A(G)$ is a real symmetric matrix, all the eigenvalues of G are real. The spectral radius (i.e. the largest eigenvalue) and the smallest eigenvalue of a real symmetric matrix X are denoted by $\lambda(X)=\lambda$ and $\rho(X)=\rho$, respectively. We use similar notation $\lambda(G)=\lambda$ and $\rho(G)=\rho$ for a given graph G. Approximating the parameters $\lambda(G)$ and $\rho(G)$ is an important problem and has attracted much attention recently; see for example [11, 12, 15]. Below, we state some known upper bounds for the parameter $\lambda(G)$.

The first four upper bounds on the spectral radius of a graph are in terms of δ and Δ and number of the vertices and edges:

$$
\begin{array}{rr}
\text { See }[2,3]: & \lambda \leqslant \sqrt{2 m-\delta(n-1)+\Delta(\delta-1)} \\
\text { See }[8]: & \lambda \leqslant \sqrt{2 m-n-\delta+2} \\
\text { See }[14]: & \lambda \leqslant \sqrt{2 m-n+1-(\delta-1)(n-1-\Delta)} \\
\text { See }[6,10,16]: & \lambda \leqslant \frac{1}{2}\left[\delta-1+\sqrt{(\delta+1)^{2}+4(2 m-\delta n)}\right]
\end{array}
$$

Furthermore, using the degree and the 2-degree of the vertices and average degrees of the vertices adjacent to $v_{i} \in V(G)$, some other upper bounds have been introduced:

$$
\begin{array}{lr}
\text { See [4]: } & \lambda \leqslant \max _{v_{i} \in V(G)}\left\{m_{i}\right\} \\
\text { See [4]: } & \lambda \leqslant \max _{v_{i} \in V(G)} \sqrt{d_{i} m_{i}} \\
\text { See [1]: } & \lambda \leqslant \max _{v_{i} v_{j} \in E(G)} \sqrt{d_{i} d_{j}} \\
\text { See [3]: } & \lambda \leqslant \max _{v_{i} v_{j} \in E(G)} \sqrt{m_{i} m_{j}}
\end{array}
$$

In addition, Feng et al. [5] presented the following upper bounds for the spectral
radius:

$$
\begin{align*}
& \lambda \leqslant \max _{v_{i} \in V(G)} \sqrt{\frac{d_{i}^{2}+d_{i} m_{i}}{2}} . \tag{9}\\
& \lambda \leqslant \max _{v_{i} v_{j} \in E(G)} \frac{\sqrt{d_{i}\left(d_{i}+m_{i}\right)+d_{j}\left(d_{j}+m_{j}\right)}}{2} . \tag{10}\\
& \lambda \leqslant \max _{v_{i} \in V(G)} \frac{d_{i}+\sqrt{d_{i} m_{i}}}{2} \tag{11}\\
& \lambda \leqslant \max _{v_{i} v_{j} \in E(G)} \frac{d_{i}+d_{j}+\sqrt{\left(d_{i}-d_{j}\right)^{2}+4 m_{i} m_{j}}}{4} . \tag{12}
\end{align*}
$$

It has been shown [3] that the bound (8) is always better than the bound (5). But some of the bounds (1)-(12) are incomparable. In this paper, we present some new upper and lower bounds for the spectral radius of a graph in terms of the 2 -degrees and k-walks. We, further, obtain some bounds for the smallest eigenvalues of graphs in terms of k-walks. We will, finally, present some examples of graphs to compare our new bounds for the spectral radius with some of the bounds mentioned above as well as a bound due to Kummar [9].

We, first, recall the following fundamental result due to Brauer [7] which will be used in the paper.

Theorem 1.1. Let $B=\left[b_{i j}\right]$ be an $n \times n$ matrix with entries in the complex field \mathbb{C}. All the eigenvalues of B are located in the union of the $n(n-1) / 2$ ovals of cassini

$$
\bigcup_{\substack{i, j=1 \\ i \neq j}}^{n}\left\{z \in \mathbb{C}:\left|z-b_{i i}\right|\left|z-b_{j j}\right| \leqslant R_{i}(B) R_{j}(B)\right\}
$$

where $R_{i}(B)=\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|b_{i j}\right|$.
The following fact [13] will, also, be useful.
Lemma 1.2. For every graph $G, \delta(G) \leqslant \lambda \leqslant \Delta(G)$, where λ is the largest eigenvalue of G.

2. Main Results

In this section we present the main results of the paper. We start with obtaining a new upper bound for the spectral radius of a graph G using the 2-degrees of their vertices.

Theorem 2.1. For any graph G with $n \geqslant 2$ vertices, we have

$$
\begin{equation*}
\lambda^{2} \leqslant \max _{\substack{1 \leqslant i, j \leqslant n \\ i \neq j}} \frac{1}{2}\left[d_{i}+d_{j}+\sqrt{\left(d_{i}-d_{j}\right)^{2}+4\left(d_{i} m_{i}-d_{i}\right)\left(d_{j} m_{j}-d_{j}\right)}\right] \tag{13}
\end{equation*}
$$

The equality holds if G is a regular graph.
Proof. Let $A=\left[a_{i j}\right]$ be the adjacency matrix of G. We apply Theorem ?? for the matrix $B=\left[b_{i j}\right]=A^{2}$. Since $b_{i i}=d_{i}$ and $R_{i}(B)=d_{i} m_{i}-d_{i}$, for all $i=1, \ldots, n$, we conclude that $\lambda(B)=\lambda^{2}(A)=\lambda^{2}$ is located in the union of $\frac{n(n-1)}{2}$ ovals of cassini

$$
\begin{aligned}
& \bigcup_{\substack{i, j=1 \\
i \neq j}}^{n}\left\{z \in \mathbb{C}:\left|z-b_{i i}\right|\left|z-b_{j j}\right| \leqslant R_{i}(B) R_{j}(B)\right\} \\
& =\bigcup_{\substack{i, j=1 \\
i \neq j}}^{n}\left\{z \in \mathbb{C}:\left|\left(z-d_{i}\right)\left(z-d_{j}\right)\right| \leqslant\left(d_{i} m_{i}-d_{i}\right)\left(d_{j} m_{j}-d_{j}\right)\right\} \\
& =\bigcup_{\substack{i, j=1 \\
i \neq j}}^{n}\left\{z \in \mathbb{R} \cup(\mathbb{C}-\mathbb{R}):\left|\left(z-d_{i}\right)\left(z-d_{j}\right)\right| \leqslant\left(d_{i} m_{i}-d_{i}\right)\left(d_{j} m_{j}-d_{j}\right)\right\}
\end{aligned}
$$

Since A is a real symmetric matrix and, thus, λ is a real eigenvalue, this implies that λ^{2} is located in the region

$$
\begin{aligned}
& \begin{array}{l}
\substack{i, j=1 \\
i \neq j}
\end{array}\left\{z \in \mathbb{R}:\left|\left(z-d_{i}\right)\left(z-d_{j}\right)\right| \leqslant\left(d_{i} m_{i}-d_{i}\right)\left(d_{j} m_{j}-d_{j}\right)\right\} \\
& =\bigcup_{\substack{i, j=1 \\
i \neq j}}^{n}\left\{z \in \mathbb{R}:-\left(d_{i} m_{i}-d_{i}\right)\left(d_{j} m_{j}-d_{j}\right)\right. \\
& \left.\leqslant\left(z-d_{i}\right)\left(z-d_{j}\right) \leqslant\left(d_{i} m_{i}-d_{i}\right)\left(d_{j} m_{j}-d_{j}\right)\right\} \\
& \subseteq \bigcup_{\substack{i, j=1 \\
i \neq j}}^{n}\left\{z \in \mathbb{R}:\left(z-d_{i}\right)\left(z-d_{j}\right) \leqslant\left(d_{i} m_{i}-d_{i}\right)\left(d_{j} m_{j}-d_{j}\right)\right\} \\
& \subseteq \bigcup_{\substack{i, j=1 \\
i \neq j}}^{n}\left\{z \in \mathbb{R}: z \leqslant \frac{d_{i}+d_{j}+\sqrt{\left(d_{i}-d_{j}\right)^{2}+4\left(d_{i} m_{i}-d_{i}\right)\left(d_{j} m_{j}-d_{j}\right)}}{2}\right\}
\end{aligned}
$$

from which the desired bound is achieved.
If G is a regular graph, then $d_{i}=\Delta$ and $d_{i} m_{i}=\Delta^{2}$, for all $v_{i} \in V(G)$. Thus

$$
\max _{\substack{1 \leqslant i, j \leqslant n \\ i \neq j}} \frac{d_{i}+d_{j}+\sqrt{\left(d_{i}-d_{j}\right)^{2}+4\left(d_{i} m_{i}-d_{i}\right)\left(d_{j} m_{j}-d_{j}\right)}}{2}=\Delta^{2}
$$

which, noting Lemma 1.2, proves the second part of the theorem.
Now, using a similar approach as in Theorem 2.1, we present a new upper bounds for the spectral radius a graph G in terms of the number of walks. In what follows we will make use of the notation

$$
W_{i j}=w_{m+1}(i, j) \quad \text { and } \quad W_{i}=\frac{w_{m+p}(i)}{w_{p}(i)}
$$

for each $i, j=1, \ldots, n$ and every integers $p \geqslant 1, m \geqslant 1$.
Theorem 2.2 For any graph G with $n \geqslant 2$ vertices and every integer $m \geqslant 1$, we have

$$
\lambda^{m} \leqslant \max _{\substack{1 \leqslant i, j \leq n \\ i \neq j}} \frac{1}{2}\left[W_{i i}+W_{j j}+\sqrt{\left(W_{i i}-W_{j j}\right)^{2}+4\left(W_{i}-W_{i i}\right)\left(W_{j}-W_{j j}\right)}\right]
$$

The equality holds if G is the complete graph K_{n}.

Proof. Let $A=\left[a_{i j}\right]$ be the adjacency matrix of G and D be the diagonal matrix with diagonal $\left(w_{p}(1), \ldots, w_{p}(n)\right)$. We apply Theorem ?? for the matrix $B=\left[b_{i j}\right]=D^{-1} A^{m} D$. Since $b_{i i}=W_{i i}$ and

$$
R_{i}(B)=\sum_{j=1}^{n} W_{i j} \frac{w_{p}(j)}{w_{p}(i)}-W_{i i}=\frac{w_{m+p}(i)}{w_{p}(i)}-W_{i i}=W_{i}-W_{i i}
$$

for all $i=1, \ldots, n$, we conclude that $\lambda(B)=\lambda^{m}(A)=\lambda^{m}$ is located in the union of $\frac{n(n-1)}{2}$ ovals of cassini

$$
\begin{aligned}
& \bigcup_{\substack{i, j=1 \\
i \neq j}}^{n}\left\{z \in \mathbb{C}:\left|z-b_{i i}\right|\left|z-b_{j j}\right| \leqslant R_{i}(B) R_{j}(B)\right\} \\
& =\bigcup_{\substack{i, j=1 \\
i \neq j}}^{n}\left\{z \in \mathbb{C}:\left|\left(z-W_{i i}\right)\left(z-W_{j j}\right)\right| \leqslant\left(W_{i}-W_{i i}\right)\left(W_{j}-W_{j j}\right)\right\}
\end{aligned}
$$

Since λ^{m} is a real number, this implies that λ^{m} is located in the region

$$
\begin{aligned}
& \bigcup_{\substack{i, j=1 \\
i \neq j}}^{n}\left\{z \in \mathbb{R}:\left|\left(z-W_{i i}\right)\left(z-W_{j j}\right)\right| \leqslant\left(W_{i}-W_{i i}\right)\left(W_{j}-W_{j j}\right)\right\} \\
& =\bigcup_{\substack{i, j=1 \\
i \neq j}}^{n}\left\{z \in \mathbb{R}:-\left(W_{i}-W_{i i}\right)\left(W_{j}-W_{j j}\right)\right. \\
& \left.\leqslant\left(z-W_{i i}\right)\left(z-W_{j j}\right) \leqslant\left(W_{i}-W_{i i}\right)\left(W_{j}-W_{j j}\right)\right\} \\
& \subseteq \bigcup_{\substack{i, j=1 \\
i \neq j}}^{n}\left\{z \in \mathbb{R}:\left(z-W_{i i}\right)\left(z-W_{j j}\right) \leqslant\left(W_{i}-W_{i i}\right)\left(W_{j}-W_{j j}\right)\right\} \\
& \subseteq \bigcup_{\substack{i, j=1 \\
i \neq j}}^{n}\left\{z \in \mathbb{R}: z \leqslant \frac{W_{i i}+W_{j j}+\sqrt{\left(W_{i i}-W_{j j}\right)^{2}+4\left(W_{i}-W_{i i}\right)\left(W_{j}-W_{j j}\right)}}{2}\right\}
\end{aligned}
$$

from which the desired bound is achieved.
Let $G=K_{n}$. Then $W_{i i}=W_{j j}$ and $W_{i}=(n-1)^{m}$, for all $v_{i} \in V(G)$. Thus

$$
\max _{\substack{1 \leqslant i, j \leqslant n \\ i \neq j}} \frac{1}{2}\left[W_{i i}+W_{j j}+\sqrt{\left(W_{i i}-W_{j j}\right)^{2}+4\left(W_{i}-W_{i i}\right)\left(W_{j}-W_{j j}\right)}\right]=(n-1)^{m}
$$

which, noting Lemma 1.2, proves the second part of the theorem.
Note that Theorem 2.1 is a spacial case of Theorem 2.2 where $m=2$ and $p=1$. Also, letting $m=1$ and $p=1,2,3$ in Theorem 2.2 , we obtain the following known inequalities, respectively:

$$
\begin{aligned}
& \lambda \leqslant \max _{\substack{1 \leqslant i, j \leqslant n \\
i \neq j}} \sqrt{d_{i} d_{j}}, \\
& \lambda \leqslant \max _{\substack{1 \leqslant i, j \leqslant n \\
i \neq j}} \sqrt{m_{i} m_{j}}, \\
& \lambda \leqslant \max _{\substack{1 \leqslant i, j \leqslant n \\
i \neq j}} \sqrt{\frac{w_{4}(i)}{d_{i} m_{i}} \frac{w_{4}(j)}{d_{j} m_{j}}} .
\end{aligned}
$$

Furthermore, we obtain new upper bounds for the spectral radius of a graph by setting $m=2$ and $p=2,3,4,5$ in Theorem 2.2 :

$$
\begin{align*}
& \lambda^{2} \leqslant \max _{\substack{1 \leqslant i, j \leqslant n \\
i \neq j}} \frac{1}{2}\left[d_{i}+d_{j}+\sqrt{\left(d_{i}-d_{j}\right)^{2}+4\left(\frac{w_{4}(i)}{d_{i}}-d_{i}\right)\left(\frac{w_{4}(j)}{d_{j}}-d_{j}\right)}\right] \tag{14}\\
& \lambda^{2} \leqslant \max _{\substack{1 \leqslant i, \leqslant n \\
i \neq j}} \frac{1}{2}\left[d_{i}+d_{j}+\sqrt{\left(d_{i}-d_{j}\right)^{2}+4\left(\frac{w_{5}(i)}{d_{i} m_{i}}-d_{i}\right)\left(\frac{w_{5}(j)}{d_{j} m_{j}}-d_{j}\right)}\right] \tag{15}\\
& \lambda^{2} \leqslant \max _{\substack{1 \leqslant i, j \leqslant n \\
i \neq j}} \frac{1}{2}\left[d_{i}+d_{j}+\sqrt{\left(d_{i}-d_{j}\right)^{2}+4\left(\frac{w_{6}(i)}{w_{4}(i)}-d_{i}\right)\left(\frac{w_{6}(j)}{w_{4}(j)}-d_{j}\right)}\right] \tag{16}\\
& \lambda^{2} \leqslant \max _{\substack{1 \leqslant i, j \leqslant n \\
i \neq j}} \frac{1}{2}\left[d_{i}+d_{j}+\sqrt{\left(d_{i}-d_{j}\right)^{2}+4\left(\frac{w_{7}(i)}{w_{5}(i)}-d_{i}\right)\left(\frac{w_{7}(j)}{w_{5}(j)}-d_{j}\right)}\right] \tag{17}
\end{align*}
$$

Corollary 2.3. For any graph G with $n \geqslant 2$ vertices and every integer $p \geqslant 1$, we have

$$
\lambda^{2} \leqslant \max _{\substack{1 \leqslant i, j \leqslant n \\ i \neq j}} \frac{1}{2}\left[d_{i}+d_{j}+\sqrt{\left(d_{i}-d_{j}\right)^{2}+4\left(\frac{w_{p+2}(i)}{w_{p}(i)}-d_{i}\right)\left(\frac{w_{p+2}(j)}{w_{p}(j)}-d_{j}\right)}\right] .
$$

The equality holds if G is a regular graph.
Proof. The bound follows from Theorem 2.2 by letting $m=2$. If G is a regular graph, then $d_{i}=\Delta$ and $\frac{w_{2+p}(i)}{w_{p}(i)}=\Delta^{2}$, for all $v_{i} \in V(G)$. Thus

$$
\max _{\substack{1 \leq i, j \leq n \\ i \neq j}} \frac{d_{i}+d_{j}+\sqrt{\left(d_{i}-d_{j}\right)^{2}+4\left(\frac{w_{2+p}(i)}{w_{p}(i)}-d_{i}\right)\left(\frac{w_{2+p}(j)}{w_{p}(j)}-d_{j}\right)}}{2}=\Delta^{2}
$$

which, noting Lemma 1.2, proves the second part of the theorem.
Furthermore, noting that if G is a bipartite graph then $W_{i i}=w_{m+1}(i, i)=0$, for each $i=1, \ldots, n$, and for every odd integer $m \geqslant 1$, we obtain the following corollary of Theorem 2.2.
Corollary 2.4. For any bipartite graph G with $n \geqslant 2$ vertices and every odd integer $m \geqslant 1$, we have

$$
\lambda^{m} \leqslant \max _{\substack{1 \leqslant i, j \leqslant n \\ i \neq j}} \sqrt{W_{i} W_{j}}
$$

Also, taking $m=1$ and $p=1$, in Corollary 2.4, we obtain

$$
\lambda \leqslant \max _{\substack{1 \leqslant i, j \leqslant n \\ i \neq j}} \sqrt{d_{i} d_{j}}
$$

We now provide an example of some graphs for which some of our bounds are better than some of the bounds (1)-(12).
Example 2.5. Consider the graphs G, H and K in Figure 1. The value of each of the upper bounds (1)-(12) as well as our bounds are listed in Table 1. We observe that our bounds are the best among all known upper bounds for the graphs G and K, and that bound (4) is the best for the graph H. Thus, these upper bounds are not comparable.
Assuming $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a sequence of positive numbers, we define

$$
W_{i}^{\alpha}=\sum_{j=1}^{n} W_{i j} \frac{\alpha_{j}}{\alpha_{i}}, \quad i=1, \ldots, n
$$

One can generalize Theorem 2.2 and provide a stronger bound in terms of W_{i}^{α} as follows. The proof is similar to that of Theorem 2.2, where $w_{p}(i)$ is replaced by α_{i}.
Theorem 2.6. Let G be a graph with $n \geqslant 2$. For every integer $m \geqslant 1$ and every sequence $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of positive numbers, we have

$$
\lambda^{m} \leqslant \max _{\substack{1 \leqslant i, j n \\ i \neq j}} \frac{1}{2}\left[W_{i i}+W_{j j}+\sqrt{\left(W_{i i}-W_{j j}\right)^{2}+4\left(W_{i}^{\alpha}-W_{i i}\right)\left(W_{j}^{\alpha}-W_{j j}\right)}\right]
$$

Now we obtain a lower bound for the spectral radius of a graph in terms of the number of its walks.

Theorem 2.7. For any graph G with $n \geqslant 2$ vertices and every integer $m \geqslant 1$, we have

$$
\begin{equation*}
\lambda^{m} \geqslant \max _{1 \leqslant j<i \leqslant n} \frac{1}{2}\left[W_{i i}+W_{j j}+\sqrt{\left(W_{i i}-W_{j j}\right)^{2}+4 W_{i j}^{2}}\right] . \tag{18}
\end{equation*}
$$

Proof. The largest eigenvalue of A^{m} is greater than or equal to the largest eigenvalue of any principal submatrix of A^{m}. Any principal submarix of order two of A^{m} is of the form

$$
\left(\begin{array}{ll}
W_{i i} & W_{i j} \\
W_{j i} & W_{j j}
\end{array}\right)
$$

The m-th root of its largest eigenvalue is equal to

$$
\left(\frac{W_{i i}+W_{i j}+\sqrt{\left(W_{i i}-W_{j j}\right)^{2}+4 W_{i j}^{2}}}{2}\right)^{\frac{1}{m}}
$$

from which the inequality follows.
Taking $m=2$ in Theorem 2.7, we obtain the following inequality which has been proved by Kummar [9].

$$
\lambda^{2} \geqslant \max _{1 \leqslant j<i \leqslant n} \frac{d_{i}+d_{j}+\sqrt{\left(d_{i}-d_{j}\right)^{2}+4 w_{3}^{2}(i, j)}}{2}
$$

Figure 1. The graphs G, H, K

Table 1: Comparison of the upper bounds

inequality	graph G	graph H	graph K
(1)	3	$2 / 8284$	3
(2)	3	$2 / 6457$	3
(3)	3	$2 / 8284$	3
(4)	3	$2 / 5615$	3
(5)	3	3	4
(6)	3	$2 / 8284$	$2 / 45$
(7)	3	$2 / 8284$	$2 / 83$
(8)	3	3	$2 / 45$
(9)	3	$3 / 3166$	$3 / 24$
(10)	3	$2 / 9154$	$2 / 78$
(11)	3	$3 / 4142$	$3 / 12$
(12)	3	$2 / 8228$	$2 / 60$
(13)	3	$2 / 6689$	$2 / 289$
(14)	$2 / 886751$	$2 / 6457$	$2 / 236$
(15)	$2 / 87228$	$2 / 5964$	$2 / 184$
(16)	$2 / 8675$	$3 / 5911$	$2 / 190$
(17)	$2 / 8656$	$2 / 5739$	$2 / 161$
real value	$2 / 8558$	$2 / 5616$	$2 / 119$

Example 2.8. Consider the graph G in Figure 2. The numerical values of the lower bound (18), for some values of m for the graph G are given in Table 2. We observe that the new bound (18), when $m=8$, is better than when $m=2$, which is the bound in [9].

Figure 2. Graph G in Example 2.8.

We, next, turn our attention to the smallest eigenvalue of graphs and calculate, in the next theorems, several lower bounds for the smallest eigenvalue of a graph. We use a similar approach as in the proof of Theorem 2.2 to prove the following theorems.

Table 2: Table in Example 2.8.

m	2	3	4	5	6	7	8	
inequality (18)	2.13	1.91	2.25	2.10	2.30	2.18	2.32	$\max =2.32$

Theorem 2.9. For any graph G with $n \geqslant 2$ vertices and every odd integer $m \geqslant 1$, we have

$$
\rho^{m} \geqslant \min _{\substack{1 \leqslant i, j \leqslant n \\ i \neq j}} \frac{1}{2}\left[W_{i i}+W_{j j}-\sqrt{\left(W_{i i}-W_{j j}\right)^{2}+4\left(W_{i}-W_{i i}\right)\left(W_{j}-W_{j j}\right)}\right]
$$

Proof. Let $A=\left[a_{i j}\right]$ be the adjacency matrix of G and D be the diagonal matrix with diagonal $\left(w_{p}(1), \ldots, w_{p}(n)\right)$. We apply Theorem ?? for the matrix $B=\left[b_{i j}\right]=D^{-1} A^{m} D$. Since $b_{i i}=W_{i i}$ and

$$
R_{i}(B)=\sum_{j=1}^{n} W_{i j} \frac{w_{p}(j)}{w_{p}(i)}-W_{i i}=\frac{w_{m+p}(i)}{w_{p}(i)}-W_{i i}=W_{i}-W_{i i}
$$

for all $i=1, \ldots, n$, we conclude that $\rho(B)=\rho^{m}(A)=\rho^{m}$ is located in the union of $\frac{n(n-1)}{2}$ ovals of cassini

$$
\bigcup_{\substack{i, j=1 \\ i \neq j}}^{n}\left\{z \in \mathbb{C}:\left|\left(z-W_{i i}\right)\left(z-W_{j j}\right)\right| \leqslant\left(W_{i}-W_{i i}\right)\left(W_{j}-W_{j j}\right)\right\}
$$

Since ρ^{m} is a real eigenvalue, this implies that ρ^{m} is located in the region

$$
\begin{aligned}
& \bigcup_{\substack{i, j=1 \\
i \neq j}}^{n}\left\{z \in \mathbb{R}:\left(z-W_{i i}\right)\left(z-W_{j j}\right) \leqslant\left(W_{i}-W_{i i}\right)\left(W_{j}-W_{j j}\right)\right\} \\
& \subseteq \bigcup_{\substack{i, j=1 \\
i \neq j}}^{n}\left\{z \in \mathbb{R}: z \geqslant \frac{W_{i i}+W_{j j}-\sqrt{\left(W_{i i}-W_{j j}\right)^{2}+4\left(W_{i}-W_{i i}\right)\left(W_{j}-W_{j j}\right)}}{2}\right\}
\end{aligned}
$$

from which the desired bound is achieved.
One can generalize Theorem 2.9 and provide a stronger bound in terms of W_{i}^{α} as follows. The proof is similar to that of Theorem 2.9, where $w_{p}(i)$ is replaced by α_{i}.

Theorem 2.10. Let G be a graph with $n \geqslant 2$. For every odd integer $m \geqslant 1$ and every sequence $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of positive numbers, we have

$$
\rho^{m} \geqslant \min _{\substack{1 \leqslant i, s \leqslant n \\ i \neq j}} \frac{1}{2}\left[W_{i i}+W_{j j}-\sqrt{\left(W_{i i}-W_{j j}\right)^{2}+4\left(W_{i}^{\alpha}-W_{i i}\right)\left(W_{j}^{\alpha}-W_{j j}\right)}\right]
$$

We conclude the paper with some upper bounds for $\rho=\rho(G)$ in terms of the number of walks of G.

Theorem 2.11. For any graph G with $n \geqslant 2$ vertices and every odd integer $m \geqslant 1$, we have

$$
\rho^{m} \leqslant \min _{1 \leqslant j<i \leqslant n} \frac{1}{2}\left[W_{i i}+W_{j j}-\sqrt{\left(W_{i i}-W_{j j}\right)^{2}+4 W_{i j}^{2}}\right] .
$$

Proof. The proof is similar to that of Theorem 2.7; note that the smallest eigenvalue of A^{m} is less than or equal to the smallest eigenvalue of any 2×2 principal submatrix of A^{m}.
The following is an immediate consequence of Theorem 2.11.
Corollary 2.12. For any bipartite graph G with $n \geqslant 2$ vertices and every odd integer $m \geqslant 1$, we have

$$
\rho^{m} \leqslant \min _{1 \leqslant j<i \leqslant n} W_{i j}
$$

Acknowledgements

The authors would like to thank the anonymous referee who provided useful comments on the previous version of the manuscript.

References

[1] B. Abrham and X. D. Zhang, on the spectral radius of graphs with cut vertices, Journal of Combinatorial Thcory, 83 (2001), 233-240.
[2] D. S. Cao, Bounds on eigenvalues and chromatic number, Linear Algebra and Its Applications, 270 (1998), 1-13.
[3] K. C. Das and P. Kumar, Some new bounds on the spectral radius of graphs. Discrete Mathematics, 281 (2004), 149-161.
[4] O. Favaron, M. Maheo, and J. F. Sacle, Some eigenvalue properties in graphs (conjectures of Graffiti-II). Discrete Math., 111 (1993), 197-220.
[5] L. Feng, Q. Li, and X. D. Zhang, Some sharp upper bounds on the spectral radius of graphs, Taiwanese Journal of Mathematics, 11 (4) (2007), 989997.
[6] Y. Hong, J.-L.Shu, and K. Fang, A sharp upper bound of the spectral radius of graphs. J. Combin. Theory B, 81 (2001), 177-183.
[7] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
[8] S. B. Hu, Upper bound on spectral Radius of graphs, Journal of Hebei University, 20 (2000), 232-234.
[9] R. Kumar, Bounds for Eigenvalues of a Graph, Journal of Mathematical Inequalities, 4 (3) (2010), 399-404.
[10] V. Nikiforov, Some inequalities for the largest eigenvalue of a graph. Comb. Probab. Comput., 11 (2002), 179-189.
[11] V. Nikiforov, The smallest eigenvalue of Kr-free graphs. Discrete Math., 306 (2006), 612-616.
[12] V. Nikiforov, Walks and the spectral radius of graphs. Linear Algebra Appl., 418 (2006), 257-268.
[13] D. B. West, Introduction to Graph Theory, Second Edition, PrenticeHall, India, 2002.
[14] H. J. Xu, Upper bound on spectral radius of graphs, Journal of Jiamusi University, 23 (2005), 126-110.
[15] A. Yu, M. Lu, and F. Tian, On the spectral radius of graphs. MATCH Commun. Math. Comput. Chem., 51 (2004), 97-109.
[16] B. Zhou and H. H. Cho, Remarks on spectral radius and Laplacian eigenvalues of a graph. Czech. Math. J., 55 (2005), 781-790.

Maryam Kargar

Ph.D student of Mathematics
Department of Mathematics
Kerman Branch, Islamic Azad university
Kerman, Iran
E-mail: maryamkargar77@yahoo.com

Tahereh Sistani

Assistant Professor of Mathematics
Department of Mathematics
Kerman Branch, Islamic Azad university
Kerman, Iran
E-mail: taherehsistani@gmail.com

[^0]: Received: July 2018; Accepted: August 2019

 * Corresponding author

