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Abstract. Let B and A be two Banach algebras and M be a Banach B-
bimodule. Suppose that o : A — B is a linear mapping. A bilinear map
¢ : Ax A — M is called a two variable o-derivation whenever ¢(ab, c) =
¢(a,c)o(b) + o(a)p(b,c) and ¢(a,be) = ¢(a,b)o(c) + o(b)g(a,c) for all
a,b,c € A. In this paper, we prove that if A4 and B are unital and
¢ : Ax A — Bis a two variable o-derivation such that ¢(1,a0) = 1 for
some ag € A then ¢ is symmetric, i.e. ¢(a,b) = ¢(b,a) and there exists
a unital homomorphism 0 : A — B such that ¢(a,b) = 0(ab)d(ao) ™.
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1. Introduction

Throughout this paper, A will represent an algebra. If A is unital then
1, will show its unit element. We shall write [a,b] for ab — ba. An al-
gebra A is said to be a domain, if whenever ab = 0, with a,b € A,
then a = 0 or b = 0. A mapping D : A — A is called a derivation if
D(ab) = D(a)b + aD(b) holds for all a,b € A. Let 0 : A — A be a
linear mapping. A linear mapping d : A — A is called a o-derivation
if d(ab) = d(a)o(b) + o(a)d(b) holds for all a,b € A. Clearly, if o = id,
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if ¢ = id, the identity mapping on A, then d is an ordinary deriva-
tion. As another example, every homomorphism 6 : A — A is a g—
derivation. Hence, the theory of o-derivations combines the theory of
derivations and homomorphisms (for more details see [9, 11-13]. The
notion of generalized derivation was introduced by Hvala [10]. An ad-
ditive mapping f : A — A is called a generalized derivation if there
exists a derivation D : A — A such that f(ab) = f(a)b + aD(b)
holds for all a,b € A. For convenience, such a derivation f is said to
be a D-derivation. By getting idea from this definition, Hosseini et al
[7], [8] defined a generalized o-derivation as follows: A linear mapping
6 : A — Ais called a generalized o-derivation if there exists a o-
derivation d : A — A such that §(ab) = 6(a)o(b) + o(a)d(b) holds for all
a,b € A. For convenience, we say that such a generalized o-derivation
0 is a (o,d)-derivation. An additive mapping H from A into itself is
called a left (right) centralizer if H(ab) = H(a)b (H(ab) = aH (b)) for
all a,b € A (see [1] and the references therein). A centralizer of A is
an additive mapping which is both a left and a right centralizer. Sup-
pose that f: A — A is a D-derivation. By putting H = f — D, we get
H(ab) = f(a)b+aD(b)—D(a)b—aD(b) = H(a)b for all a,b € A. It means
that H is a left centralizer. Similarly, if § : A — A is a (o, d)-derivation
then T'(ab) = T'(a)o(b) for all a,b € A, where T = § — d. The linear
mapping T is called a o-algebraic map (the reader is referred to [7]). M.
Hassani and A. Hosseini [6] defined a two variable (o, 7) — derivation as
follows:

Let A be a Banach algebra and M be a Banach A — bimodule. Sup-
pose that o,7 : A — A are two linear mappings. A bilinear map-
ping ¢ : A x A — M is called a left two variable ¢ — derivation if
o(ab,c) = ¢(a,c)o(b)+o(a)p(b,c) for all a, b, ¢ € A. Similarly, ¢ is called
a right two variable 7 — derivation if ¢(a,bc) = ¢(a,b)r(c) + 7(b)¢(a, ¢)
for all a, b, c € A. A bilinear mapping ¢ : A x A — M is said to be a two
variable (o, 7)—derivation if it is a left two variable o —derivation as well
as a right two variable T—derivation. A two variable (o, o) —derivation is
called a two variable o —derivation. If 0 = 7 = id, the identity mapping
on A, then the bilinear map ¢ : A x A — M is called a two variable
derivation. For example, a bilinear map ¢ : A x A — A defined by
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¢(a,b) = [a,b] = ab— ba is a two variable derivation. Furthermore, they
showed that if A is a commutative Banach algebra and ¢ : Ax A — A is
a continuous two variable derivation then ¢(e*®, e*?) = 2w €**+“?¢(a, b)
for all a,b € A and = E (C Also the following formula has been proved:
Pla™, ™) = S8 i Lak b p(a, )b 1 q" 1k for every a,b € A.
Thus if ¢(a,b) = [a, b} then

[a, b™] = Znil o Lakbifa, b]pm 1 qm 1k and

[e%,e*?] = 2w fo ! eswhetzalg ple(1—t)zag(l- S)“’bdt ds (for more details
see [6]). Moreover, as an application of a two variable o-derivations, un-
der certain conditions, it has been proved that a simple Banach algebra
is a field [[6], Theorem 2.8]. In this research the following main result is
proved:

Suppose that A and B are unital and ¢ : A x A — B is a two vari-
able o-derivation. If ¢(1,a9) = 1 for some ag € A, then ¢ is sym-
metric and there exists a unital homomorphism 6 : A — B such that
é(a,b) = 0(ab)(A(ag))~! for all a,b € A. Moreover, ﬁ@ is a commuta-
tive algebra.

2. Main Results

Throughout this paper, A and B denote two Banach algebras. Moreover,
M denotes a Banach B-bimodule. M is called symmetric if bx = xb for
all b € B,z € M. Furthermore, if an algebra is unital then 1 will show
its unit element.
Suppose o : A — B is a linear operator. We know that a linear operator
d: A — M is called a o-derivation if d(ab) = d(a)o(b) + o(a)d(b) for
all a,b € A. It is clear that if A is a subalgebra of B and o = id, the
inclusion map, then a o-derivation is an ordinary derivation.

Let 0 : A — B be a linear operator. A bilinear map ¢ : A x A — M
is called a left two variable o-derivation whenever,

¢(ab,c) = ¢(a,c)a(b) + a(a)d(b,c), (a,b,ce€ A).

¢ is called a right two variable o-derivation if

¢(a,be) = ¢(a,b)o(c) + a(b)d(a,c), (a,b,ce€ A).
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If A is a subalgebra of B and ¢ : A — B is the inclusion map, then
¢ is called left(right) two variable derivation. Moreover a bilinear map
¢: Ax A — M is called two variable o-derivation if it is both a left
and a right two variable o-derivation (see [6]).

For example, suppose that A is a subalgebra of B and ¢ : A —
B is a homomorphism. Then ¢ : A x A — B defined by ¢(a,b) =
o(a)xr — zo(a) + o(ab — ba) (a,b € A, x € B) is a left two variable o-
derivation. Furthermore, if ¢(a,b) = [o(a),o(b)] = o(a)o(b) — o(b)o(a),
then ¢ is a two variable o — derivation.

Let ¢ : A x A — A be a continuous two variable derivation. For a, b
in A, we define a function f, : R? — A by the following form:

fap(r,s) = ¢(e", eSb).

We have
afa,b BERT fa,b(r + h7 S) - fa,b(ra 5)
T (1) = Jim h
. ¢(€(T+h’)a, esb) _ ¢(€ra’ esb)
h—0 h
i ¢(eraeha _ era7 €Sb)
= 11m
h—0 h
. ¢(€Ta(eha _ 1)’ 6sb)
h—0 h
ehe —1
— ra i sb
_ ¢(€7"a }ILH% aeha’ esb)
— ¢(6raa, GSb).
Similarly,
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If A is commutative, then we have f,(r,s) = rs e‘"“””b(p(a? b). Hence

afﬂb
el G

agi"’ (r, 8) = re"**¢(a, b) + rsbe " ¢(a, b).

It is clear that Q—(’;‘:;-‘—' and Qg‘iw are continuous functions on R? and so

fap(r, 5) is differentiable. Thus there exist two functions 1,2 : R?2 - A
such that

= Se?'a--i—sbgb(a’ b) + rsae"a'+5b(f)(a, b)

lim gi(h,k)=0 i=1,2
(h,k)—(0,0)

and furthermore,

fab fab

Jap(r +hys+k) = fap(r,s) = L (r;8) +k 5

(r,s) + hey(h, k) + kea(h, k).
Hence
‘p(e{r‘-i—h)a (3+L}b) {Pm sb) h(ﬁ(aem,ESb) + k(,ID(S.m. besb) + hey (.r‘l,._ k) + L’E‘g{h, k)

Putting » = s = 0 in the previous equation and using the fact that.
#(1,a) = ¢(a,1) = 0 for all a € A, we get ¢(e"?, M) = hey(h, k)
kea(h. k). If £1 and e have partial derivatives with reqpect to h, k, then

j p(eh, ekb) = ; 1[4’1{51(»!‘1,4%) + kea(h, k)] and we have

e Ozo
ha _kby __ 1
o(ae™, e™) = ey(h, k) +h8a’ (h,k) + k@! (h, k).
Thus

8 _,ha ]xb 351 852

5% (ae™®, e [Elhk +h(9.-‘ (h, L)—l—kah(} k).
It implies that

05 82 de 0%ey
Jha Mi 1 2
o(ae™, be (h k) + 8&03 (h, k) + 7 (}t’k)+k8&8h(h k).



98 A. HOSSEINI AND M. HASSANI

Putting h = k£ = 0 in the previous relation, we arrive at

s(a.0) = 210,00+ Z2(0,0).

It is a characterization of a continuous two variable derivation that we
conjecture to be applied in differential calculus.

Definition 2.1. Suppose that o : A — B is a linear operator. If for each
b € A there exists an element x, € M such that zp(o(ac) — o(a)o(c)) =
(o(ac) —o(a)o(c))zy for all a,c € A, then the bilinear mapping ¢ : A x
A — M defined by ¢(a,b) = o(a)zy, — xzpo(a) is called an inner left two
variable o-derivation. Similarly, if for each a € A there exists an element
zq € M such that xq(o(bc) — o (b)a(c)) = (a(bc) — a(b)o(c))xq, then the
bilinear mapping ¢(a,b) = o(b)x, — xeo(b) is called an inner right two
variable o-derivation. ¢ is called an inner two variable o-derivation if it
s an inner left two variable o-derivation as well as an inner right two
variable o-derivation.

Remark 2.2. Suppose that ¢ : A x A — M is a left(right) two variable
o-derivation and {\; }icr is a net in A such that {¢(a, \i) }ier({d(Nis @) bier)
is a convergent net for all a € A. We defined : A — M by d(a) =
lim;er ¢(a, A;)

(d(a) = limier ¢(Ni,a)). Then d is a o-derivation.

The following proposition and remark have been proved in [6].

Proposition 2.3. Suppose that ¢ : A x A — M is a continuous two
variable o-derivation and A has an approzimate identity {e;}icr such
that {o(e;) }icr is a convergent net in B. Then

lim ¢(e;, b)o(a) = lim ¢(a, e;)o(b)

el i€l
17,161111 O'(CL)QZ)(GZ', b) = IZIGH} U(b)¢(aa 6i)

for all a,b € A.

Remark 2.4. If A is unital and ¢ : A X A — M is a two variable
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o-derivation then

o(a)p(1,b) = a(b)(a, 1),
¢(1,b)o(a) = ¢(a, 1)o(b),
for all a,b € A. If $(1,1) = 0 and ¢(a,b) = ¢(1,ab), then ¢ is iden-

tically zero. Because ¢(1,a) = ¢(1, 1a) = ¢(1,1)o(a) + o(1)¢(1,a) =
¢(1,1)0(a) +o(a)p(1,1) =0+ 0=0, for all a € A.

Proposition 2.5. Suppose that ¢ : A x A — A is a continuous two
variable derivation. If A has a bounded approzimate identity {e;}icr,
then lim;er ¢(a, e;) = limier ¢(e;,a) =0 for all a € A.

Proof. It is clear that

lim p(ei,b)a = lim ag(e;,b) = lim bo(a, €;) = lim¢(a, e;)b =0

for all a,b € A. Let a be an arbitrary element of A. Since A has a
bounded approximate identity, there exist two elements b and ¢ in A
such that a = ¢b. Then
li ;) =1 b, e;
i 6(a, e5) = lim o(cb, ;)
= hef?(fﬁ(ca ei)b+ cp(b, e;))
1
=i )b+ i b, e;
i1€rr11¢>(c, ei)b+ ilerrllcqﬁ( ,€i)
=04+0=0
Similarly, we can get lim;es ¢(e;,a) =0 for alla € A. O

Remark 2.6. Suppose that ¢ : Ax A — M is a two variable derivation
such that ¢(ab, c) = ¢(a,bec) for all a,b,c € A. If A is unital or ¢ is con-
tinuous and A has a bounded approximate identity, then ¢ is identically
Z€T0.

Theorem 2.7. Suppose that ¢ : A x A — M is a continuous two
variable o-derivation and A has a bounded approximate identity {e;}icr
such that {o(e;)}ier is a convergent net in B. Then there is ag € B
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such that the linear operator d : A — M defined by d(c) = d(ab) =
o(a,b) — apd(a,b) + ¢(b,a) — ¢(b,a)ag (for ¢ = ab) is a o-derivation.

Proof. Let lim;jes 0(e;) = ag. Then we have
o(b,a) = laler? o(be;, a)
=limo(b,a)o(e;) + a(b)ole;, a)

icl
= ¢(b, a)ag + Limo(b)¢(es, a).

So ¢(b,a) — ¢(b,a)ag = lim;e; o(b)o(e;, a). Similarly, we have ¢(a,b) =
lim;er d(e;a,b) = limieg o(e;)d(a, b)+d(e;, b)o(a) = apd(a, b)+limies d(e;, b)o(a).
Hence ¢(a,b) — app(a,b) = lim;e; ¢(e;, b)o(a). Consequently,

¢(a,b) — app(a,b) + ¢(b,a) — ¢(b,a)ag = lim(¢(e:, b)o(a) + o (b)lei, a))

= lim ¢(e;, ba
iel d )
for all a,b € A. Since A has a bounded approximate identity, A% = A
and so the net {¢(e;,a)}ier is convergent for all a € A2 = A. Now, we
define a linear operator d : A — M by d(a) = lim;cs ¢(e;, a). It follows
from Remark 2.2 that d is a o-derivation. [

Suppose that M is a B-bimodule. We say that M has no zero divisors
if whenever bz = 0 or zb = 0, with b € B,z € M, then b = 0 or 2z = 0.
Ifo: Ax A — M is a two variable o-derivation then we know that
o(a,1) = ¢(1,a) for all @ € A (see the proof of Theorem 2.9 in [6]).
Suppose that D,d : A — B are two o-derivations such that d(a)o(b) =
o(b)d(a) and D(a)o(b) = o(b)D(a) for all a,b € A. Then the bilinear
map ¢ : A x A — B defined by ¢(a,b) = d(a)D(b) is a two variable
o-derivation. Using the fact that ¢(a,1) = ¢(1,a) for all a € A, we
obtain d(a)D(1) = d(1)D(a).

Theorem 2.8. Let B, A be unital, and d,D : A — B be two non-zero
o-derivations such that 1—o(1) is invertible. If d(1) = D(1) then D=d.

Proof. Suppose that a € A is a non-zero arbitrary element. We have
d(a) = d(1)o(a)+o(1)d(a) and D(a) = D(1)o(a)+c(1)D(a) = d(1)o(a)+
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o0(1)D(a). Hence d(1)o(a) = d(a) —o(1)d(a) = D(a)—o(1)D(a). It im-
plies that (1 — o(1))(d(a) — D(a)) = 0. Using the fact that 1 —o(1) is
invertible, we arrive at d(a) = D(a) for all @ € A and it means that
Di=d: &

Theorem 2.9. Suppose that A is unital and ¢ : A x A — M is a two
variable o-derivation such that ¢(a,b) = ¢(1,ab) for all a,b € A. Then
¢ is symmetric, i.e. ¢(a,b) = o(b,a) (a,b € A).

Proof. First of all, we show that ¢(ab,c) = ¢(a,bc) if and only if
¢(1,ab) = ¢(a,b) for all a,b,c € A. If ¢p(ab,c) = ¢(a,bc) then clearly,

o(1,ab) = ¢(a,b). Conversely, assume that ¢(1,ab) = ¢(a,b). Then
o(ab,c) = ¢(lab, c) = ¢(1, abc) and ¢(a, be) = ¢(1a, be) = ¢(1, abe). Hence
o(ab,c) = ¢(a,be) for all a,b,c € A. By hypothesis and using Remark
2.4, for every a,b € A we have

¢(a,b) = ¢(1,ab)
= o(1,a)0(b) +o(a)p(1,b)
= ¢(b, 1)o(a) + o (b)¢(a, 1)
= ¢(ba,1)
= ¢(b,a).

=]

It means that ¢ is symmetric. [J

Remark 2.10. If A has an approzimate identity such as {€;}icr and ¢ is
a continuous two variable o-derivation such that ¢(a,b) = lim;er ¢(e;, ab),
then ¢ is symmetric.

Definition 2.11. Let ¢ : A x A — X, where X is a Banach space, be a
bilinear map. We say that ¢ preserves zero product if

a,be A,ab=0= ¢(a,b) =0 (By).

Definition 2.12. A Banach algebra A has the property (B) if every
continuous bilinear map ¢ : Ax A — X, where X is an arbitrary Banach
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space, (By) implies that ¢(ab,c) = ¢(a,bc) (a,b,c € A)
(for more details see [2]).

Corollary 2.13. Let A has the property (B) and having a bounded
approzimate identity. Then every continuous two variable o-derivation
¢ Ax A— M satisfying (B1) is symmetric.

Theorem 2.14. Suppose that A has the property (B) and having a
bounded approximate identity. Then A is commutative if and only if
for every a,b € A, ab = 0 implies that ba = 0.

Proof. Suppose for every a,b € A, ab = 0 implies that ba = 0. We
define ¢ : A x A — A by ¢(a,b) = ab — ba. Hence, ¢ is continuous
bi-linear mapping which preserves zero product. Let {e;} be a bounded
approximate identity. According to Remark 2.6, ¢ is identically zero. So,
ab—ba = 0 for all a, b € A. It means that A is commutative. The converse
is clear. [

Note that if A4 is a domain with the property (B) and furthermore, A
has a bounded approximate identity, then A is commutative.

Note: Let A be a unital Banach algebra with the property (B) and let ¢ :
Ax A — M be a continuous two variable o —derivation which preserves
zero product. It follows from Theorem 2.9, that ¢ is symmetric.

Theorem 2.15. Suppose that M is symmetric and A has a bounded
approximate identity. Assume that ¢ : A x A — M is a continuous two
variable o-derivation. If o(a)p(b,c) = ¢(a,b)o(c) for all a,b,c € A then
¢ is symmetric and there exists a continuous o-derivation d : A — M
such that ¢(a,b) = d(ab) for all a,b € A.

Proof. First of all, we show that the following are equivalent:

(i) ¢(aba C) = d’(a? bc),

(i) o(a)(b, ¢) = dla, b)o (o)

(i) ¢(ab, c) = d(ac, ),

for all a,b,c € A. Clearly, (i) < (ii). We are going to prove that (ii) <
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(iii). Suppose (ii) is true. We have therefore the relations

for all a, b, c € A. Conversely, suppose (iii) is true, then for every a,b € A
and every bounded approximate identity {e;};c; we have

#(a,b) = lm o(cia, b)
= IZIGHII o(eib, a)

= ¢(b7 CL),

which means that ¢ is symmetric. Reusing (iii) together with the fact
that ¢ and M are symmetric, we obtain ¢(b,a)o(c) = ¢(a,b)o(c) =
¢(a,c)o(b) = o(b)p(a,c) for all a,b,c € A. Consequently, we can find
that ¢(a,b)o(c) = o(a)p(b,c) and (ii) is achieved. So (i), (ii) and (iii)
are equivalent. It follows from (i) that

¢(a,b) = 11161111 (e;a,b) = IZIEIIIl (e;,ab) (1)
for all a,b € A. Hence the net {¢(e;,a)}icr is convergent for each a €
A? and so we may define a linear operator d : A?> — M by d(a) =
lim;es ¢(e;,a) (a € A?). According to the definition of d and in view of
(1), we have ¢(a,b) = d(ab) for all a,b € A. Since A has a bounded
approximate identity, .A?> = A. Hence d is a o-derivation from A into
M. Moreover, for every a € A,

[o(ei, a)ll < [l lllleslllall < ||¢||$1€1?Hei\lllall
1

and so d is continuous with ||d|| < ||¢||sup;er [lesl]. O

Theorem 2.16. Suppose that A and B are unital and ¢ : Ax A — B
is a two variable o-derivation. If ¢(1,a9) = 1 for some ay € A, then
¢ is symmetric and there exists a unital homomorphism 0 : A — B
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such that ¢(a,b) = 0(ab)(0(ag))~* for all a,b € A. Moreover, ﬁ@) is a
commutative algebra.
Proof. First note that o(1) = 1. Because,

1,0{]) = ¢(1 1,&0)
1)¢(17a0) + ¢(17a0)0(1)

1=¢

—~ o~

We know that ¢(a,1) = ¢(1,a) for all a € A. Assume that ¢ and b are
two arbitrary elements of A. Then we have

¢(a7 b) = ¢(1aa b)

So ¢(a,b) = 2¢(1,b)o(a). By Remark 2.4 and reusing the fact that
¢(a,1) = ¢(1,a) for all a € A, we can get

¢(b,a) = 24(1,a)o(b)
=2¢(b, 1)o(a)
= 2¢(1,b)o(a)
= ¢(a,b).

It means that ¢ is symmetric. Let a be an arbitrary element of A. Then

#(a,ag) = ¢p(al,ao)
= ¢(a,ao)o(1) +o(a)e(1,ao)

Hence o(a) = M We define a linear operator 6 : A — B by 0(a) =
¢(a,ap). Obviously, (1) = 1 and it means that 0 is unital. Furthermore,
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we have

0(ab) = ¢(ab, ag)
= ¢(a, ag)o(b) + o(a)d(b, ag)

oo, 2020 | 000y

¢(a, ap)p(b, ao)
= 0(a)o(b).

Il

So # is a unital homomorphism. Furthermore,

¢(a'} GOJ = qﬁ(”ﬂ 1(10)
= ¢(a,1)a(ag) + o(1)¢(a, ap)

= ¢(a,1) (“”2’ i qb(“é““) .

So ¢(a, ay) = ¢(a, 1)¢(ag, ag). This results that 1 = ¢(1,ag) = &(1,1)¢(ag, ap).

Similarly, by using the equation ¢(a, ag) = ¢(a.agl), we can obtain that
1 = ¢(ag, ag)p(1,1). Hence ¢(ag,ag)™' = ¢(1,1). Now, we define a o-
derivationd : A — Bby d(a) = ¢(a,1). Since ¢(a, ag) = ¢(a, 1)¢(ag, ag),
f(a) = d(a)f(ag) for all a € A. So d(a) = 0(a)f(ag)~!. Moreover, we have

and so d(a) = 2d(1 ola) = 0) L) — g(ag)~'0(a). Similarly,
d(a) = d( Jo(1) + o(a)d(1) = ) + o(a)d(1) and therefore, d(a) =
20(a)d(1) = O(a ) ap) L. Henc 8(a)f(ag)™' = O(ag)~'0(a) for all
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a € A. Assume that a and b are two arbitrary elements of A. Then

Our next task is to prove that Ffl@ is a commutative algebra. Since ¢ is
symmetric, i.e. ¢(a,b) = ¢(b,a) for all a,b € A, we have 0(ab)f(ag) ™ =
0(ba)f(ag) . This implies that #(ab) = 6(ba), i.e. ab — ba € ker(f) for
all a,b € A. Consequently, ab+ ker(6) = ba + ker(0) and it results that

A .
Ter(e) 18 @ commutative algebra.

Corollary 2.17. Suppose that A is unital and B is a unital, commutative
Banach algebra. Let ¢ : A x A — B be a two variable o-derivation
such that ¢(1,a9) = 1 for some ag € A. If B is semisimple then ¢ is
CONtINUOUS.

Proof. It is an immediate conclusion from the previous theorem and
Proposition 5.1.1 of [5]. O
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